
RADA NAUKOWA DYSCYPLINY

INFORMATYKA TECHNICZNA I TELEKOMUNIKACJA POLITECHNIKI WARSZAWSKIEJ

zaprasza na

 OBRONĘ ROZPRAWY DOKTORSKIEJ

mgr inż. Klary Marii Borowej

która odbędzie się w dniu 25.04.2025 roku, o godzinie 11:30 w trybie stacjonarnym

Temat rozprawy:

,, Cognitive Biases in Architectural Decision-Making: Impact and Debiasing Strategies”

Promotor: dr hab. inż. Andrzej Zalewski – Politechnika Warszawska

Recenzenci: dr hab. inż. Lech Madeyski, prof. uczelni – Politechnika Wrocławska

dr hab. inż. Mirosław Ochodek – Politechnika Poznańska

dr hab. inż. Aneta Poniszewska-Marańda, prof. uczelni – Politechnika Łódzka

Obrona odbędzie się zdalnie na platformie w sali nr 478. Osoby zainteresowane uczestnictwem w obronie proszone są o zgłoszenie chęci uczestnictwa w formie

elektronicznej na adres sekretarza komisji: dr hab. inż. Mariusz Kaleta, email: mariusz.kaleta@pw.edu.pl, do dnia 23.04.2025r. godz. 23:59.

Z rozprawą doktorską i recenzjami można zapoznać się w Czytelni Biblioteki Głównej Politechniki Warszawskiej, Warszawa, Plac Politechniki 1.

Streszczenie rozprawy doktorskiej i recenzje są zamieszczone na stronie internetowej: https://www.bip.pw.edu.pl/Postepowania-w-sprawie-nadania-stopnia-

naukowego/Doktoraty/Wszczete-po-30-kwietnia-2019-r/Rada-Naukowa-Dyscypliny-Informatyka-Techniczna-i-Telekomunikacja/mgr-inz.-Klara-Maria-Borowa

Przewodniczący Rady Naukowej Dyscypliny

Informatyka Techniczna i Telekomunikacja

Politechniki Warszawskiej

prof. dr hab. inż. Jarosław Arabas

https://www.bip.pw.edu.pl/Postepowania-w-sprawie-nadania-stopnia-naukowego/Doktoraty/Wszczete-po-30-kwietnia-2019-r/Rada-Naukowa-Dyscypliny-Informatyka-Techniczna-i-Telekomunikacja/mgr-inz.-Klara-Maria-Borowa
https://www.bip.pw.edu.pl/Postepowania-w-sprawie-nadania-stopnia-naukowego/Doktoraty/Wszczete-po-30-kwietnia-2019-r/Rada-Naukowa-Dyscypliny-Informatyka-Techniczna-i-Telekomunikacja/mgr-inz.-Klara-Maria-Borowa

WARSAW UNIVERSITY OF TECHNOLOGY

DISCIPLINE OF SCIENCE: Information and Communications Technology

FIELD OD OF SCIENCE : Engineering and technology

Klara Maria Borowa, M.Sc.

Cognitive Biases in Architectural Decision-Making:

Impact and Debiasing Strategies

Supervisor

D.Sc. Eng. Andrzej Zalewski

WARSAW 2024

Acknowledgments

This thesis is the fruit of a long journey. A journey that would never have been possible

without the many people who supported me. Some directly influenced this research, and some

simply helped me out on a personal level. There is no possibility of listing them all, but I will

attempt to do so nonetheless.

First and foremost, I want to thank my family wholeheartedly. My husband Piotr, who did

all the hard husbandly things, comforted me when I was sad, pushed me to do better, and took

care of our kids when I needed to work. He also helped find some participants for this research

and distributed many questionnaires for me. I would like to thank my children, Łucja and

Maksymilian, for simply being here - you are two bright spots of pure love in my life. Also,

special thanks to my mom, who supported me from the beginning until now.

Secondly, I would like to thank all researchers, more or less experienced, who took part in and

co-authored my research. This includes two of my colleagues from my team: Andrzej Ratkowski

and Szymon Kijas. Also, numerous master’s students from Warsaw University of Technology

who took part in my research at various points: Robert Dwornik, Sebastian Kamoda, Piotr

Ogrodnik, Maria Jarek, Gabriela Mystkowska, Weronika Paszko, Rafał Lewanczyk, Klaudia

Stpiczyńska and Patryk Stradomski. My friend Adam Saczko, who was my gate to video game

development, and Damian Kowalski, who provided his psychology expertise.

Thirdly, I would like to thank two researchers who believed in this research and performed the

final empirical validation experiments in their counties: Marion Wiese and Rodrigo Rebouças de

Almeida. Working with you both was a pleasure!

Last but not least, I would like to thank my supervisor, Andrzej Zalewski. This journey started

7 years ago when he recommended Daniel Kahneman’s book "Thinking, Fast and Slow". None

of this research would have ever happened without that spark that has grown into a nice bonfire.

This was quite the journey. Thank you for being here for it all!

3

Cognitive Biases in Architectural Decision-Making:
Impact and Debiasing Strategies

Abstract.

Context: Cognitive biases are natural heuristics impacting each person’s decision-making

process. Biased decisions cannot be considered fully rational since they are based on various

oversimplifications and mental shortcuts. Cognitive biases have been researched in numerous

software engineering subdomains, such as testing, requirements engineering, and software effort

estimation. In most cases, the biases’ were a source of various faulty decisions, and as such,

researchers strive to alleviate the biases’ influence on software practitioners. The impact of

cognitive biases has been of particular interest in the domain of software architecture since the

architecture itself can be viewed as a set of design decisions. The impact of cognitive biases

on software architecture can be severe, e.g., it may result in incurring unnecessary architectural

technical debt. As such, the software architecture community has recognized that research on

debiasing methods for software architects is a pressing necessity.

Goal: This thesis presents a set of studies that firstly explored rationales behind architectural

decisions and how cognitive biases impact architectural decision-making. Since this impact was

proven to be a danger to software projects, the secondary goal of debiasing (i.e., alleviating the

impact of biases) was defined. As such, this thesis answers the following research questions:

• RQ1: What rationales are the main reasons behind decisions impacting software practi-

tioner’s architectural decision-making?

• RQ2: How do cognitive biases impact architectural decision-making?

• RQ3: Does cognitive biases’ impact on architectural decision-making cause architectural

technical debt?

• RQ4: How can the negative impact of cognitive biases on architectural decision-making be

alleviated?

Method: In order to answer the research questions, various research methods were utilized.

The data on rationales behind architectural decisions (RQ1) was obtained through question-

naires and interviews with software practitioners. Information about specific biases impacting

architectural decision-making (RQ2) was gathered during a group workshop with software

practitioners. Specifics about cognitive biases’ influence on incurring architectural technical

debt (RQ3) were explored through a series of semi-structured interviews with architects. The

5

debiasing intervention (RQ4) was designed and tested in increments: first through a small pilot

study with two groups of students, then through a controlled experiment with 12 groups of

students, and then finally verified in an experiment with experienced practitioners.

Results: This thesis’ results are numerous. Firstly, the most often used rationales behind

architectural decisions were identified, as well as the understanding of why practitioners use

these rationales (RQ1). Secondly, a list of 11 cognitive biases that have an impact on architectural

decision-making, as well as their consequences, was created (RQ2). The impact of cognitive

biases on incurring architectural technical debt was found, which resulted in the finding that three

dominating biases are the most problematic: optimism bias, confirmation bias, and anchoring

(RQ3). Finally, a debiasing workshop was designed and empirically proven to be beneficial for

both students and experienced practitioners (RQ4).

Conclusions: The series of studies presented in this paper resulted in a deepened under-

standing of cognitive biases on architectural decision-making. Since this impact appeared

to be potentially severely dangerous, a debiasing treatment to alleviate the impact of biases

was designed and empirically validated. Materials allowing the replication of the debasing

intervention and the debiasing workshop are available online.

Keywords: Cognitive bias, Software Architecture, Architectural decision-making, Debiasing

6

Błędy Poznawcze w Podejmowaniu Decyzji Architektonicznych: Wpływ
oraz Przeciwdziałanie

Streszczenie.

Kontekst: Błędy poznawcze to naturalne heurystyki, które wpływają na proces podejmowania

decyzji przez każdego człowieka. Decyzje podjęte pod ich wpływem, nie mogą być uważane

za w pełni racjonalne, ponieważ opierają się na różnych uproszczeniach i skrótach myślowych.

Błędy poznawcze były badane w wielu poddziedzinach inżynierii oprogramowania, takich jak

testowanie, inżynieria wymagań i szacowanie nakładu pracy potrzebnego do realizacji projek-

tów informatycznych. W większości przypadków błędny poznawcze były źródłem różnych

opacnzych decyzji, w związku z czym badacze starają się złagodzić wpływ uprzedzeń na prak-

tyków oprogramowania. Wpływ błędów poznawczych jest szczególnie znaczący w dziedzinie

architektury oprogramowania, ponieważ sama architektura może być zdefiniowana jako zbiór

decyzji. Wpływ błędów poznawczych na architekturę oprogramowania może być dotkliwy, na

przykład mogą wpłynąć na zaciągnięcie niepotrzebnego architektonicznego długu technicznego.

W związku z tym społeczność badaczy architektury oprogramowania uznaje że badania nad

metodami przeciwdziałania błędom poznawczym dla architektów oprogramowania są pilną

koniecznością.

Cel: Niniejsza rozprawa przedstawia zestaw badań, które miały na celu: (1) Umożliwienie

odkrycia powszechnie używanych kryteriów podajmowania decyzji architektonicznych oraz (2)

Zbadnie wpływu błędów poznawczych na podejmowanie decyzji architektonicznych. Ponieważ

wpływ ten okazał się potencjalnym zagrożeniem dla projektów informatycznych, zdefiniowano

drugorzędny cel badań, czyli złagodzenie wpływu błędów poznawczych. W związku z tym

niniejsza rozprawa odpowiada na następujące pytania badawcze:

• RQ1: Jakie powody stoją za podejmowaniem decyzji architektonicznych przez praktyków

oprogramowania?

• RQ2: W jaki sposób błędy poznawcze wpływają na podejmowanie decyzji architekton-

icznych?

• RQ3: Czy wpływ błędów poznawczych na podejmowanie decyzji architektonicznych jest

powodem zaciągania architektonicznego długu technicznego?

• RQ4: W jaki sposób można złagodzić negatywny wpływ błędów poznawczych na podej-

mowanie decyzji architektonicznych?

7

Metoda: Aby odpowiedzieć na pytania badawcze, wykorzystano różne metody badawcze.

Dane dotyczące racjonalności decyzji architektonicznych (RQ1) uzyskano za pomocą kwest-

ionariuszy i wywiadów z ekspertami. Informacje na temat konkretnych błędów poznawczych

wpływających na podejmowanie decyzji architektonicznych (RQ2) zostały zebrane podczas

warsztatów grupowych z ekspertami. Szczegółowe informacje na temat wpływu błędów poz-

nawczych na zaciąganie architektonicznego długu technicznego (RQ3) zostały zbadane poprzez

serię wywiadów z architektami oprgramowania. Interwencja przeciwdziałająca (RQ4) została

zaprojektowana i przetestowana w trzech kropah: najpierw poprzez małe badanie pilotażowe z

dwiema grupami studentów, następnie poprzez eksperyment z 12 grupami studentów, a następnie

ostatecznie zweryfikowana w eksperymencie z doświadczonymi praktykami.

Wyniki: Wyniki tej pracy są różnorodne. Po pierwsze, znaleziono najczęściej używane

powody stjące za decyzjami architektonicznymi, a także odkryto, dlaczego praktycy uznają te

powody za ważne (RQ1). Po drugie, stworzono listę 11 błędów poznawczych, które mają wpływ

na podejmowanie decyzji architektonicznych, a także ich konsekwencje (RQ2). Ustalono wpływ

błędów poznawczych na zaciąganie architecktoniczneg długu technicznego, w wyniku czego

stwierdzono, że trzy dominujące błędy poznawcze są najbardziej problematyczne: optymizm,

potwierdzenie i zakotwiczenie (RQ3). Ostatecznie, zaprojektowano warsztat przeciwdziałający,

które okazay się korzystny zarówno dla studentów, jak i doświadczonych praktyków (RQ4).

Wnioski: Seria badań przedstawionych w niniejszej rozprawie zaowocowała pogłębionym

zrozumieniem błędów poznawczych w podejmowaniu decyzji architektonicznych. Ponieważ

wpływ ten okazał się potencjalnie bardzo niebezpieczny, zaprojektowano i empirycznie zwalid-

owano strategię łagodzącą wpływ błędów poznawczych. Materiały pozwalające na replikację tej

interwencji, czyli warsztatu przeciwdziałającego, są dostępne online.

Słowa kluczowe: Błąd poznawczy, Architektura Systemów Informatycznych, Podejmowanie

decyzji architektonicznych, Przeciwdziałanie błędom poznawczym

8

Contents

Acknowledgments . 3

1. Introduction . 15

1.1. Research Questions . 17

1.2. Author’s published work . 18

1.3. Thesis Outline . 20

2. State of the Art . 24

2.1. Cognitive biases . 24

2.2. Cognitive biases in software engineering . 27

2.2.1. Cognitive biases in requirements engineering 28

2.2.2. Cognitive biases in implementation . 28

2.2.3. Cognitive biases in testing . 29

2.2.4. Cognitive biases in software effort estimation 30

2.2.5. Other impacts of cognitive biases on software engineering activities . . . 31

2.3. Cognitive biases and architectural decision-making 31

2.4. Debiasing . 32

3. What rationales drive architectural decisions? An empirical inquiry 34

3.1. Preface . 35

3.2. Abstract . 36

3.3. Introduction . 36

3.4. Related Work . 37

3.5. Method . 38

3.5.1. Questionnaire: data-gathering . 38

3.5.2. Questionnaire: analysis . 39

3.5.3. Interviews: data gathering . 41

3.5.4. Interviews: analysis . 42

3.6. Results . 42

3.6.1. RQ1 & RQ2: Most frequent rationales and prioritised software quality

attributes . 42

3.6.2. RQ3: Rationales’ origins . 46

3.7. Discussion . 49

9

3.8. Threats to validity . 51

3.9. Conclusion . 51

4. On Cognitive Biases in Architecture Decision Making 53

4.1. Preface . 54

4.2. Abstract . 55

4.3. Introduction . 55

4.4. Related Work . 56

4.5. Investigating Biases in Architectural Decision Making 57

4.5.1. Workshop on Biases in Architecture Decision-Making 57

4.5.2. Influence of Cognitive Biases on Architecture Decision-Making 58

4.6. Cognitive Biases in the Practical Conditions of Architectural Decision Making . 67

4.7. Results . 68

4.8. Discussion, Limitations . 69

4.9. Summary and Research Outlook . 70

5. The Influence of Cognitive Biases on Architectural Technical Debt . 72

5.1. Preface . 73

5.2. Abstract . 74

5.3. Introduction . 74

5.4. Related Work . 75

5.5. Research Method . 76

5.5.1. Cognitive biases . 76

5.5.2. Architectural Debt items . 77

5.5.3. Research procedure . 78

5.5.4. Study participants . 79

5.5.5. Analysis Procedure . 80

5.6. Results . 81

5.6.1. Architectural debt items influenced by cognitive biases 81

5.6.2. Cognitive biases that influence ATD items 82

5.6.3. Influence of cognitive biases on ATD items 83

5.6.4. Cognitive bias antecedents (RQ4) . 88

5.6.5. Possible debiasing methods (RQ5) . 92

5.7. Discussion . 93

10

5.8. Threats to Validity . 94

5.9. Conclusion and Research outlook . 94

6. Is knowledge the key? An experiment on debiasing architectural
decision-making - a pilot study . 96

6.1. Preface . 97

6.2. Abstract . 98

6.3. Introduction . 98

6.4. Related Work . 99

6.5. Study Design . 99

6.5.1. Bias selection . 99

6.5.2. Data acquisition . 100

6.5.3. Data Analysis . 100

6.5.4. Participants . 101

6.6. Results . 101

6.7. Threats to validity . 103

6.8. Discussion . 103

6.9. Research outlook . 104

6.10.Conclusion . 105

7. Debiasing architectural decision-making: a workshop-based
training approach . 106

7.1. Preface . 107

7.2. Abstract . 108

7.3. Introduction . 108

7.4. Related work . 109

7.5. Research Method . 110

7.5.1. Biases . 110

7.5.2. Architectural decision-making task . 111

7.5.3. Debiasing Workshop Design . 111

7.5.4. Sample . 112

7.5.5. Analysis . 112

7.6. Results . 112

7.6.1. Arguments. 113

11

7.6.2. Decisions. 113

7.6.3. Cognitive biases. 113

7.6.4. Debiasing techniques. 114

7.7. Discussion . 114

7.8. Threats to Validity . 115

7.9. Conclusion and Future Work . 115

8. Debiasing Experts . 117

8.1. Preface . 118

8.2. Abstract . 120

8.3. Introduction . 120

8.4. Related work . 122

8.4.1. Cognitive biases . 122

8.4.2. Debiasing . 124

8.5. Method . 124

8.5.1. Sample . 125

8.5.2. The experiment . 126

8.5.3. Debiasing Workshop . 127

8.5.4. Data Analysis . 128

8.6. Results . 130

8.6.1. Statistical significance . 131

8.6.2. Arguments and Counterarguments . 133

8.6.3. Cognitive biases . 134

8.6.4. Debiasing techniques . 134

8.6.5. Decisions . 134

8.7. Discussion . 135

8.7.1. Lessons learned . 136

8.8. Threats to validity . 137

8.9. Conclusion . 139

8.10.Data availability . 139

9. Discussion and limitations . 140

9.0.1. Limitations . 145

10.Conclusion . 146

12

10.0.1.Data availability . 147

References . 149

List of Figures . 166

List of Tables . 167

13

1. Introduction

Software engineering is a field originally conceived to foster the application of scientific

knowledge in various phases of software development, with a particular focus on software design,

software construction, and writing technical documentation [1]. The first conference, which

focused on topics related to software engineering, was organized by NATO in 1968 [2], where

scientists focused on software design, production, and maintenance methods. Currently, the

definition of software engineering has been expanded into: "the application of a systematic,

disciplined, quantifiable approach to the development, operation, and maintenance of software;

that is, the application of engineering to software" [3].

Software architecture is a subdomain of software engineering, which was recognized as an

extremely significant part of software design already during the second software engineering

NATO conference in 1969 [4]. Software architecture itself can be defined in various ways,

e.g.: (1) a set of software elements and their interactions [5] or (2) a set of architectural

design-decisions [6]. There are various ways of describing a system’s architecture, such as

through the 4+1 views model [7], the ISO/IEC/IEEE 42010 standard [8], and the C4 model [9].

Cognitive bias is a term created by psychology researchers Amos Tversky and Daniel

Kahneman [10]. According to them, cognitive biases are systematic errors that arise from the

heuristics of the human mind that are used unconsciously to simplify judgmental operations [10].

These simplifications are an inherent feature of the human mind, and they are extremely useful

in performing mundane, low-stakes, everyday decisions, such as deciding which route to take

in order to travel home or what to eat for breakfast. Without heuristics simplifying decisions,

the human body would be excessively worn down since entirely rational logic-based thinking

uses the body’s resources, e.g., it lowers blood glucose concentration [11]. However, this feature

can become an impediment in the case of critical high-stakes decisions. For example, investors

may prefer to buy stocks of companies that have a short, easy-to-pronounce name [12]. The

discoveries related to understanding how human psychology decision-making had been the basis

on which Daniel Kahneman obtained the Nobel Prize in Economy in 2002 [13].

Software engineering research on cognitive biases is quite diverse since cognitive biases

can impact every aspect of human judgment, including all decisions made by practitioners in

the software development process [14]. Notable software engineering disciplines researched

in the context of biases include requirements engineering [15], task time estimation [16], agile

software development [17], testing [18], architecture [19] and implementation [20].

15

1. Introduction

Cognitive biases in software architecture are an important research area [21] since software

architecture can be defined as a set of design decisions [6] and cognitive biases may distorted

the decision-making process. Research so far indicates that software architects are often biased

[22] and that the biases influence may result in subpar architectural solutions [23]. Such biased

decisions may have various negative consequences, such as incurring dangerous [24] architectural

technical debt [25], choosing novel solutions without proper risk assessment [26], or assuming

that technologies which the development team used previously are always the best choice [22].

As such, understanding the possible negative impact of cognitive biases on software architecture

and alleviating this effect is an important research challenge.

The ultimate goal of this research is to create a debiasing strategy that would reduce the

negative impact of cognitive biases on architectural decisions, which would improve quality of

architectures designed by software practitioners.

The contributions comprise a series of solutions to the research problems (defined through

the research questions). The contributions, which are all grounded in empirical data, can be

summarised as follows:

• Establishing rationales that practitioners use to justify their architectural decisions (Chapter

3).

• Defining a list of cognitive biases impacting architectural decision-making, as well as their

consequences (Chapter 4).

• Finding which cognitive biases may cause the occurrence of architectural technical debt.

The consequences of such technical debt and the cognitive biases antecedents were also

found (Chapter 5).

• Discovering "the wicked triad," an interaction between three major cognitive biases (anchor-

ing, optimism bias, and confirmation bias). This triad seems to be a major reason behind

numerous biased architectural decisions (Chapter 6).

• The design and empirical validation of a successful debiasing workshop, which was vali-

dated on students (Chapters 6 and 7) and practitioners (Chapter 8). The importance of this

contribution stems from the fact that no previous research has produced an empirically

proven debiasing strategy for architectural decision-making.

• The discovery that debiasing interventions may impact students and practitioners differently.

Students’ improvement is noticeable since they formulate more non-biased (i.e., fact-based)

arguments for and against architectural solutions. Yet, the number of bias occurrences does

16

1. Introduction

not decrease (see Chapter 7). In turn, Practitioners’ improvement manifests in fewer bias

occurrences and fewer biased arguments in favor of architectural solutions (see Chapter 8).

This implies that debiasing interventions must be adjusted to the participant’s experience

level to be effective.

This thesis’ contributions are beneficial for both software engineering researchers and practi-

tioners.

Researchers obtain knowledge about how architectural decisions are made in practice:

what rationales motivate practitioners while making decisions, which cognitive biases distort

architectural decisions, and how these biases interact with each other. Furthermore, they are now

equipped with an empirically proven effective debiasing intervention. This knowledge can be

used to develop future methods (e.g., debiasing intervention) and guidelines (e.g., the use of

debiasing techniques)for enhanced architectural decision-making.

Practitioners may directly use the teaching materials prepared for the debiasing intervention

as a basis for performing their own debiasing workshop in their workplace.

Overall, the knowledge obtained through this study is a step towards better software quality.

This can be achieved by making software architects less impacted by cognitive biases, hence

making more rational, informed decisions.

1.1. Research Questions

The research problems this thesis aims to address are expressed as a set of research questions.

The main focus of the research presented in this is the impact of cognitive biases on architectural

decision-making. The focal point of this research is finding which cognitive bias influences are

negative and how their impact can be reduced.

To explore this issue in depth, this thesis aims to answer the following research questions:

• RQ1: What rationales are the main reasons behind decisions impacting software

practitioner’s architectural decision-making?

The purpose of this research was to understand which factors practitioners consider most

frequently during the architectural decision-making process. Some of the discovered

rationales may be cognitive bias antecedents. For example, previous positive experiences

with a specific framework may be an antecedent for the anchoring bias [10]. When impacted

by anchoring, practitioners may choose a framework based on their previous experiences

with it instead of the fit for the project’s conditions.

17

1. Introduction

• RQ2: How do cognitive biases impact architectural decision-making?

This research aimed at identifying the cognitive biases that influence architectural decision-

making. Additional focus was put into finding the consequences of these biases. Such a list

could be used in subsequent studies as a set of reference biases to be researched.

• RQ3: Does cognitive biases’ impact on architectural decision-making cause architec-

tural technical debt?

Incurring technical debt is synonymous with making a decision that favors short-term

benefits over long-term ones [27]. Architectural technical debt, in particular, is considered

to be dangerous because of its severe consequences [24] and lack of adequate refactoring

strategies that would make it possible to repay such debt [28]. As such, the aim of this

research was to evaluate whether decisions to incur architectural technical debt may be

influenced by cognitive biases.

• RQ4: How can the negative impact of cognitive biases on architectural decision-making

be alleviated?

Having established that cognitive biases may have a negative impact on architectural

decision-making and its results, the subsequent research goal was the creation of an effective

debiasing treatment. Previous research suggests a general lack of such debiasing treatments

in the software engineering domain [14]. However, creating such seemed possible since

a successful debiasing treatment was previously designed for debiasing software effort

estimation [29].

In this thesis, Research Questions are used instead of a Thesis since this view on the research

matter allows for methods more open to finding additional, unexpected (yet still valuable) insights.

A particular example is Chapter 6, which contains an article about a failed debiasing attempt.

Despite failing to debias the participants, this paper’s findings were crucial in developing a

successful debiasing strategy.

1.2. Author’s published work

This thesis is based on a set of five published papers, as well as one yet unpublished experiment.

The papers included in this thesis as chapters are:

1. Andrzej Zalewski, Klara Borowa, and Andrzej Ratkowski. "On cognitive biases in ar-

chitecture decision making." Software Architecture: 11th European Conference, ECSA

2017, Canterbury, UK, September 11-15, 2017, Proceedings 11. Springer International

18

1. Introduction

Publishing, 2017. (2024 MNiSW points: 140)

Thesis author’s contribution: data gathering, data analysis, writing the paper’s first draft as

well as making changes to the final paper.

2. Klara Borowa, Andrzej Zalewski, and Szymon Kijas. "The influence of cognitive biases

on architectural technical debt." 2021 IEEE 18th International Conference on Software

Architecture (ICSA). IEEE, 2021. (2024 MNiSW points: 140)

Thesis author’s contribution: original research idea, research method design, data gathering,

half of the data analysis (coding), most of the paper writing.

3. Klara Borowa, Robert Dwornik, and Andrzej Zalewski. "Is knowledge the key? an

experiment on debiasing architectural decision-making-a Pilot study." Product-Focused

Software Process Improvement: 22nd International Conference, PROFES 2021, Turin,

Italy, November 26, 2021, Proceedings 22. Springer International Publishing, 2021. (2024

MNiSW points: 70)

Thesis author’s contribution: original research idea, research method design, data gathering,

half of the data analysis (coding), most of the paper writing.

4. Klara Borowa, Maria Jarek, Gabriela Mystkowska, Weronika Paszko, and Andrzej Za-

lewski "Debiasing architectural decision-making: a workshop-based training approach."

European Conference on Software Architecture. Cham: Springer International Publishing,

2022. (2024 MNiSW points: 140)

Thesis author’s contribution: original research idea, research method design, data gathering,

half of the data analysis (coding), most of the paper writing.

5. Klara Borowa, Rafał Lewanczyk, and Klaudia Stpiczyńska, Patryk Stradomski, and

Zalewski, Andrzej. "What rationales drive architectural decisions? An empirical inquiry."

European Conference on Software Architecture. Cham: Springer Nature Switzerland, 2023.

(2024 MNiSW points: 140)

Thesis author’s contribution: original research idea, research method design, questionnaire

analysis most of the paper writing.

Other published works from the author:

1. Andrzej Zalewski, Klara Borowa, and Damian Kowalski. "On cognitive biases in re-

quirements elicitation." Integrating research and practice in software engineering (2020):

111-123. (2024 MNiSW points: 20)

2. Klara Borowa, Andrzej Zalewski, and Adam Saczko. "Living With Technical Debt—A

19

1. Introduction

Perspective From the Video Game Industry." IEEE Software 38.6 (2021): 65-70. (2024

MNiSW points: 100)

3. Andrzej Zalewski, Klara Borowa, and Krzysztof Lisocki. "Supporting Architectural

Decision-Making with Data Retrieved from Online Communities." International Conference

on Dependability and Complex Systems. Cham: Springer International Publishing, 2021.

(2024 MNiSW points: 20)

4. Szymon Kijas, and Klara Borowa. "Evolution Process for SOA Systems as a Part of

the MAD4SOA Methodology." International Conference on Dependability and Complex

Systems. Cham: Springer International Publishing, 2021. (2024 MNiSW points: 20)

5. Klara Borowa, Sebastian Kamoda, Piotr Ogrodnik, Andrzej Zalewski. "Fixations in Agile

Software Development Teams." Foundations of Computing and Decision Sciences 48.1

(2023): 3-18. (2024 MNiSW points: 40)

6. Wiese, Marion, and Klara Borowa. "IT managers’ perspective on Technical Debt Man-

agement." Journal of Systems and Software 202 (2023): 111700. (2024 MNiSW points:

100)

1.3. Thesis Outline

This thesis is divided into ten chapters. Figure 1.1 gives an overview of the outline, as well as

what published work is contained in particular chapters.

The overview is explained below:

• Chapter 1 is an introduction to the topic, containing not only an introduction to the research

area and motivation behind this work but also information on the author’s published work,

the contributions of this thesis as well as a precise definition of the original solution to the

research problem.

• Chapter 2 contains the information about the related work and state of the art.

• RQ1: What rationales are the main reasons behind decisions impacting software

practitioner’s architectural decision-making? is answered as part of Chapter 3. This

chapter presents an empirical inquiry through a questionnaire and a set of semi-structured

interviews, which resulted in a list of rationales that practitioners reported using during

architectural decision-making. The reasons why these rationales are common, as well as

the differences between rationales used by practitioners with different experience levels, are

explained in detail in this paper as well.

20

1. Introduction

Figure 1.1. Thesis overview

21

1. Introduction

Chapter 3 contains the following peer-reviewed article:

Klara Borowa, Rafal Lewanczyk, Klaudia Stpiczyńska, Patryk Stradomski, and Andrzej

Zalewski. "What rationales drive architectural decisions? An empirical inquiry." European

Conference on Software Architecture. Cham: Springer Nature Switzerland, 2023.

• RQ2: How do cognitive biases impact architectural decision-making? is answered

in Chapter 4. This chapter presents the results of a workshop conducted with software

practitioners, where they discussed cases when cognitive biases impacted architectural

decision-making. The results of this workshop consisted of an ordered list of cognitive

biases in accordance with their perceived impact on architectural decision-making.

Chapter 4 contains the published peer-reviewed article:

Zalewski, Andrzej, Klara Borowa, and Andrzej Ratkowski. "On cognitive biases in ar-

chitecture decision making." Software Architecture: 11th European Conference, ECSA

2017, Canterbury, UK, September 11-15, 2017, Proceedings 11. Springer International

Publishing, 2017.

• RQ3: Does cognitive biases’ impact on architectural decision-making cause archi-

tectural technical debt? is answered in Chapter 5. This chapter contains information

about an interview study conducted with software practitioners, which made it possible to

understand which cognitive biases are likely to impact architectural technical debt, as well

as the biases antecedents and this technical debt’s consequences.

Chapter 5 contains the following peer-reviewed paper:

Borowa, Klara, Andrzej Zalewski, and Szymon Kijas. "The influence of cognitive biases

on architectural technical debt." 2021 IEEE 18th International Conference on Software

Architecture (ICSA). IEEE, 2021.

• RQ4: How can the negative impact of cognitive biases on architectural decision-making

be alleviated? is answered in Chapters 6, 7 and 8. These three chapters showcase the

development and validation of a debiasing intervention.

Chapter 6 presents a pilot study with two groups of students - one of which took part in

a simple debiasing presentation. This intervention turned out to be ineffective. However,

analyzing the student’s behavior resulted in a deepened understanding of cognitive bias

influence, resulting in the proposal of a new set of debiasing techniques.

Chapter 6 contains the following published peer-reviewed paper:

22

1. Introduction

Borowa, Klara, Robert Dwornik, and Andrzej Zalewski. "Is knowledge the key? an

experiment on debiasing architectural decision-making-a Pilot study." Product-Focused

Software Process Improvement: 22nd International Conference, PROFES 2021, Turin, Italy,

November 26, 2021, Proceedings 22. Springer International Publishing, 2021.

Chapter 7 showcases the results of a debiasing workshop designed based on the findings

from Chapter 6. 12 groups of computer science students took part in this experiment. The

student groups were given two tasks to design an architecture - before and after participating

in a debiasing workshop. The results were positive overall in most groups, which validated

the workshop as useful for teaching students.

Chapter 7 contains the following published article:

Klara Borowa, Maria Jarek, Gabriela Mystkowska, Weronika Paszko, Andrzej Zalewski

"Debiasing architectural decision-making: a workshop-based training approach." Euro-

pean Conference on Software Architecture. Cham: Springer International Publishing, 2022.

Chapter 8 contains a yet unpublished experiment with expert practitioners. 18 practitioners

from 3 different countries (Poland, Germany, and Brazil) took part in this experiment.

Practitioners were divided into a control and experimental group, with the experimental

group participating in the debiasing workshop. Overall, the impact of biases was smaller

for the experimental group participants.

• In Chapter 9 the overall results and their implications are discussed.

• Chapter 10 contains the thesis conclusion.

23

2. State of the Art

The purpose of this chapter is to present research related to this thesis. It is worth noting

that while starting this research, the author conducted a systematic literature review on the topic

of cognitive biases in software engineering. This systematic review is detailed in the author’s

Master’s Thesis [30]. This chapter contains both information present in that thesis as well as

data on new relevant literature that was published in the following years.

Section 2.1 explains the concept of cognitive biases and the dual process theory. Section 2.2

showcases previous research on cognitive biases in the software engineering domain. Then, Sec-

tion 2.3 explains the current state of research on cognitive biases in architectural decision-making.

Finally, Section 2.4 contains information about debiasing, i.e., mitigating the impact of cognitive

biases.

2.1. Cognitive biases

William James is considered a precursor of the dual process theory in psychology due to

his work "The Principles of Psychology," where he defines various ways of human reasoning,

two of them in particular: associative and rational [31].

Association in the human mind, according to James, is simply a perceived (not always

factual) connection between certain things in the mind. It is described as heavily impacted by an

individual’s past experiences, e.g., "that twenty experiences make us recall a thing better than

one" [31].

James explains that for reasoning to be rational, two steps must be taken: a specific piece of

information must be perceived, and the consequences of this information must be deduced [31].

In his book, James gives the following example: "Suppose I say, when offered a piece of

cloth, " I won’t buy that; it looks as if it would fade," meaning merely that something about it

suggests the idea of fading to my mind, – my judgment, though possibly correct, is not reasoned,

but purely empirical; but, if I can say that into the color there enters a certain dye which I know

to be chemically unstable and that therefore the color will fade, my judgment is reasoned. The

notion of the dye which is one of the parts of the cloth, is the connecting link between the latter

and the notion of fading." [31].

In this thesis, this combination of "information" and "deduction" is considered necessary for

a logical, not biased, rationale. While "rationale" has the broad meaning of "reason for

24

2. State of the Art

decisions," only rationales resulting in a logical deduction based on a fact can be considered

rational, i.e., non-biased.

Posner and Snyder were the first researchers to distinguish between automatic and conscious

thinking [32]. According to them [32], the automatic processes in the human mind occur when:

• the individual has no intention to consciously think about something,

• when there is no interference from other mental activities.

Posner and Snyder also note that the reason for such automatic thinking is the limited capacity

of the human mind for conscious thought [32].

These concepts were developed further by Tversky and Kahneman, who introduced the term

cognitive biases, which are systematic errors resulting from the heuristics of the human mind,

used to simplify judgment operations [33]. To explain the source of cognitive biases, Kahneman’s

take on the dual process theory must be explained. He proposed a model of the human mind as

one consisting of two systems: Systems 1 and 2. System 1 is fast - it operates on associations

and various other heuristics. System 2, however, is capable of rule-based logical reasoning, yet

slow. Cognitive biases occur when judgments are made solely based on System 1 [12].

System 1

It looks like it

System 2

Fact:
data about dye

The data
suggets that

Judgment

Yes

No

Question

Will this cloth fade
quickly?

Figure 2.1. Dual-process judgment

The idea of two Systems fits with James’ views on rational judgment. Figure 2.1 illustrates

how James’ example of judgment of a cloth’s color fading could be explained by Khanemen’s

dual process theory [12]. In the case of biased judgment, System 1 would simply inform the

individual that "it looks like it." For the judgment to be rational, System 2 would have to step in

and asses the data about the dye used in the fabric. A significant change from James’ original

understanding is that, according to Kahneman, it is impossible to skip the "it looks like it"

thinking provided by System 1. System 1 thinking is automatic, and as such, it always occurs.

Instead, System 2 has to validate and correct these initial judgments. This concept is crucial for

understanding how "rational decisions" are defined. Rational decisions are ones made based

25

2. State of the Art

on the judgment validated and corrected by System 2. This judgment must be based on a

logical non-biased rationale (a fact and its logical consequence).

In the initial work of Tversky and Kahneman [33], three significant cognitive biases are

introduced:

1. Representativeness – a cognitive bias that occurs because people unconsciously expect a

sample to represent a different sample that they personally experienced. [34]. For example,

a person in whose family most marriages ended in divorce may assume that divorce is more

common in the general population than it is.

2. Availability – a heuristic that makes individuals make assumptions based on information

most easily available to them [35]. For example, after repeatedly seeing an advertisement

for a certain product, a customer is more likely to recall its name and thus may buy it.

3. Anchoring – is an individual’s tendency to disproportionately consider only one possible

value in making a decision. In particular – usually, the initial value was either presented to

them, or they came up with themselves [36].

Since then, many more cognitive biases have been explored in a wide array of domains, e.g.,

tourism management [37], medicine [38] and software engineering [14].

To understand various biases’ impacts on software engineering described later in this Chapter,

it is necessary to know the definition of the following cognitive biases that have not been

explained yet:

• Confirmation bias – the tendency to seek information that could possibly confirm one’s

belief while unintentionally avoiding information that may force a belief change [39]. For

example, researchers may unintentionally seek only data sources that would confirm their

research hypothesis while omitting ones that have a higher probability of disconfirming it.

• Over-confidence – The tendency to overestimate one’s knowledge, skill, and accuracy, which

makes individuals overestimate their control over one’s environment [14]. For example,

a person with a family member sick due to a specific illness, may perceive themselves as

more knowledgeable on this illness than medical practitioners.

• Positive test bias – the tendency to set a hypothesis based on data the one knows will favor

the hypothesis [40]. For example, a software tester that knows the test is positive for all

even numbers between 2 and 100 may repeat this test for even numbers between 50 and

100.

• (Over) Optimism bias – the tendency to overestimate the probability of positive out-

26

2. State of the Art

comes [41]. For example, a developer may assume, without checking, that an API that he

has to use will work exactly as he expects it to.

• Planning fallacy – the tendency to underestimate completion times of one’s planned

tasks [42].

• Egocentric bias – the tendency to overestimate one’s own values, opinions, and contributions

over the ones of other people [43].

• Fixation – while the term originated from Freud’s theories on sexuality [44], fixation is now

defined as overly focus on certain items, practices, and obstacles (even those that do not

actually exist) [45].

• Framing effect – the tendency to interpret information depending on how it was pre-

sented [46]. For example, patients may choose a particular brand of medicine depending on

how it is advertised or labeled.

• Halo effect – the tendency to evaluate unknown values of a certain item based on a small

set of known values (usually the first ones noticed) [47]. For example, human beings often

judge a person based on the first impression of their external appearance.

It is important to note that many of the definitions of biases were developed in parallel by

researchers from various domains. As a result, the definitions of many cognitive biases, partially

or even completely, overlap with each other. For example, positive test bias is a specific case of

confirmation bias that is connected with performing formalized testing.

2.2. Cognitive biases in software engineering

Research on cognitive biases in various software engineering sub-domains is rather scarce.

Mohanani et al., in their systematic mapping, which encompasses data up to 2016, found 65

papers relevant to the topic [14]. For years 2017-2018 an update of this list was performed as

part of this thesis author’s Master’s thesis [30] - only three new relevant studies were identified

this way. Since then, various new papers on the topic have been published, but the evidence

from the mapping of Mohanani et al. [14] and its update [30] suggests that cognitive biases in

software engineering are a topic with less than 10 papers published yearly.

This Section is divided into Subsections that focus on software engineering sub-domains that

have been deeply researched in the context of cognitive biases:

• Requirements engineering (Section 2.2.1)

• Implementation (Section 2.2.2)

27

2. State of the Art

• Testing (Section 2.2.3)

• Software effort estimation (Section 2.2.4)

Other, less thoroughly researched topics are shortly explained in Section 2.2.5.

2.2.1. Cognitive biases in requirements engineering

Brownie and Ramesh, in their paper explaining phases of requirements determination, are

the first to account for the possible impact of cognitive biases in the requirements domain

[48]. In their paper, they explore how the three heuristics originally described by Tversky

and Kahneman [10] may impact an analyst. They provide examples for all of them, e.g., for

anchoring: "An analyst designing a user interface relies on past interfaces he has designed, fails

to adjust adequately to current user needs, and delivers an interface that is not functional" [48].

Pitts and Browne explain various ways in which cognitive biases are likely to impact an

analyst in the process of requirements engineering [49]:

• Anchoring and overconfidence may make them less likely to explore alternatives.

• Availability may limit exploration for new requirements to the requirements based on fresh

memories from recent projects.

• Representativeness can make analyst see similarities with their previous project despite no

evidence supporting this similarity.

Chakraborty et al. [50] present a model of requirements elicitation and suggest that the

cognitive biases researched by Brownie and Ramesh [48] have an impact on the "Mental Model

Creation" phase. One consequence of such impact may be overconfidence, making the users

overestimate their business knowledge [50].

The author of this thesis has co-authored a peer-reviewed paper on the biases’ impact on

requirements elicitation. In it, based on an experiment with student participants, core biases

that require further research in this domain have been pinpointed [51]. This filled a significant

research gap, since previous research did not empirically assess which cognitive biases should

be researched in this domain. Previously, Brownie and Ramesh [48], Chakraborty et al. [50], and

Pitts and Browne [49] researched only the three cognitive biases defined originally by Tversky

and Kahneman [10].

2.2.2. Cognitive biases in implementation

The first research paper that noted the possibility of cognitive biases’ impact on any aspect

of software development, was written by Stacy and Macmillan [52] and focused on software

28

2. State of the Art

developers’ everyday programming tasks. In particular, they discussed the following three biases

and their impact [52]:

• Representativeness may make developers’ judgment on the probability of certain events

imprecise. For example, they may wrongly consider one output of independent random

values to be more probable than another based on the output’s contents.

• Availability may make developers use code constructs (e.g., long variable names) solely

based on the fact that they either recently saw them in a project’s code, or because they

often see them.

• Confirmation bias may make finding errors in the code harder - developers may spend a

large amounts of time searching for errors in the part of the code that are irrelevant to the

error, since confirmation bias made them believe that this particular fragment of the code is

faulty.

Another aspect of implementation that can be impacted by cognitive biases is artifact reuse.

Parsons and Saunders [53], as well as Allen and Parsons [54], have performed empirical ex-

periments which proved that developers are likely to anchor on reusing preexisting code. This

may lead to the spread of existing errors, although this effect seems to affect novices more than

experienced practitioners [53].

Chattopadhyay et al. [20] performed a field study with 10 developers, whom researchers

observed during their everyday work. They found that about 70% of actions with a negative

outcome could be associated with a cognitive bias. This research resulted in various notable

findings - such as which biases impact developers during implementation and their consequences.

2.2.3. Cognitive biases in testing

Leventhal et al. [40] were the first to explore how cognitive biases may impact testing. They

performed a set of experiments to asses whether students and professional testers are impacted

by positive test bias while performing testing tasks. In all groups, positive test bias was present.

Although it was the strongest in the case of junior students (in comparison to advanced students

and practitioners).

Subsequently, work on exploring the impact of biases on testing was largely expanded by

Calikli and Bener [55] [56] [57] [58]. In their various empirical evaluations [55] [57] [58],

they proved the impact of confirmation bias during testing activities on both student [55] and

practitioner [58] participants. This effect can be summarized as the following: while testing’s

29

2. State of the Art

goal is to find various errors, humans are likely to unconsciously seek to prove the software’s

correctness. As such, they are likely to perform unnecessary tests that they expect to return

no information about any errors. As such, a confirmation bias’ consequence is that the code

becomes more defect prone [58]. Finally, Calikli and Bener [56] developed a metric scheme for

measuring confirmation bias’ levels and found a correlation between it and software defect rate.

Further exploration of confirmation bias’ impact was performed by Salaman et al. [18]

who, through a grounded theory study, developed a list of 20 antecedents of confirmatory

and dis-confirmatory testing. The disconfirmatory antecedent that study participants mostly

mentioned was "project experience". Previous experiences in the project allowed practitioners to

recognize an increased number of edge cases that are more likely to result in failed tests.

2.2.4. Cognitive biases in software effort estimation

Jørgensen and Sjøberg [59] were the first to note the possibility that three cognitive biases

described initially by Tversky and Kahneman [33] may impact software effort estimation.

Moløkken and Jørgensen [60] focused on countering the effect of optimism bias that caused

overly small estimates for project tasks. They discovered that group discussion on estimates,

instead of combining individual estimates, is effective in countering over-optimistic predictions

Moløkken and Jørgensen [60] [61] [62].

Additional research from this group of researchers has led to many findings, such as:

• Experts with technical knowledge are more likely to provide over-optimistic estimates for

two reasons: (1) They analyze the problem from an "insider" perspective and, as such,

are less likely to look at historical data; (2) They are perceived as more competent if they

provide smaller estimates [63].

• In software projects, effort estimates are often backed by over-confidence bias. Practitioners

may be over-confident for such reasons as (1) lack of feedback; (2) having solely an

"inside" perspective; (3) trying to maintain an image as a more skilled expert; (4) the project

managers seemed to reward over-confident team members [64].

• Over-optimism bias may be the source of the "winner’s curse", i.e. the situation when

software companies, in an attempt to win a bid to get a client, underestimate the project’s

workload so much that they face problems in delivering the software [65].

• Psychology tests meant to measure the subject’s level of optimism (ASQ and LOT-R tests)

are a poor predictor of over-optimistic predictions in a software project [66].

• Paradoxically, work on risk identification increases levels of over-optimism and over-confidence

30

2. State of the Art

– since having more information about risks makes practitioners feel more in control of an

unpredictable situation [67].

Work on improving the accuracy of effort estimates to mitigate over-optimism and over-

confidence has additionally been expanded by other researchers. Shmueli et al. [68] found that

predictions are improved by providing reference information about past projects to provide an

"outside" perspective. Sheppherd et al. [29] found that intentionally anchoring practitioners on

an initial overly-pessimistic estimate can be used as a tool to rationalize effort estimations as

well.

2.2.5. Other impacts of cognitive biases on software engineering activities

Agile software development has been researched in the following contexts:

• In pair programming tasks, novice developers are more often anchored on the initial solution,

since they are less likely to think of multiple possible solutions [69].

• Student developers that are part of agile teams, due to the egocentric bias, overestimate the

effort they put into the project in comparison to other team members. This effect slowly

disappears as they gain more experience working together [70].

• Fixation makes agile team members over-focus on certain agile practices (e.g. daily

meetings) while losing focus on key agile principles (e.g. self-organising teams) [17].

Designer creativity has been shown to be impeded by the framing effect, which may make

designers fixate on a given set of requirements. To counter this effect, it is possible to simply

re-frame designers’ thinking by formulating requirements in a "softer" way, which allows for

creative freedom [15].

User experience has been theorized to be impacted by cognitive biases, like the halo effect

which makes the user’s first impression extremely important [71].

2.3. Cognitive biases and architectural decision-making

Software architecture may be defined in various ways [72], these include:

• Perry and Wolf [5] describe software architecture as a set of elements: (1) processing

elements; (2) data elements, and (3) connecting elements.

• Bass et al. state that software architecture is "a set of structures needed to reason about the

system" [73].

• Jansen and Bosch [6] describe software architecture as a set of design decisions.

31

2. State of the Art

The particular definition of software architecture "as a set of architectural design decisions" [6]

is the one assumed in this thesis. Jansen and Bosch [6] define a single architectural design

decision as a decision containing the following:

• Rationale – the reasons behind the decision.

• Design rules – which describe how further decisions should be made.

• Design constraints – describing what behaviors are prohibited.

• Additional requirements – requirements that new architectural decisions must fulfill.

The viewpoint on software architecture as a set of design decisions empowered software

architecture researchers to focus on architectural decision-making. This led to the creation

of decision-making guidelines [74], as well as intensive empirical research on architectural

decision-making [21].

Human factors in architectural decision-making, in particular, have been thoroughly ex-

plored [75]. This included the observation that software architects may make decisions impacted

by cognitive biases, first made by Tang [76]. Later, van Vliet and Tang [77] expanded this

idea by showcasing how anchoring, the framing effect, and confirmation bias may impact

software architecture. Additionally, Manjunath et al. [23] conceptualized at which phases of

the decision-making cycle cognitive biases may happen. The research presented in this Thesis

further expanded the knowledge in this domain.

2.4. Debiasing

Debiasing is the act of countering cognitive biases. As described by by Fischhoff [78], there

are four levels of debiasing treatments:

• A: Informing about cognitive biases. In this case, the intervention consists simply of

one-way communication with general knowledge about cognitive biases, e.g., a lecture.

• B: Informing about cognitive biases, focusing on which biases may affect the intervention

participants, e.g. a lecture where software architects would be informed about the current

research on cognitive biases in architectural decision-making.

• C: Informing about biases combined with personalized feedback, e.g., a lecture about biases

in architectural decision-making and a practical workshop during which participants could

train in decision-making techniques.

• D: Extensive long-term training designed to counter biases, e.g., after performing a C-level

debiasing intervention, periodic training workshops could be performed.

32

2. State of the Art

In the realm of software engineering, research on debiasing techniques is scarce [14], although

the need for such research was noted over a decade ago by Ralph [45]. One such successful

technique is having analysts use procedural prompts for requirements elicitation [49]. Another

beneficial debiasing intervention was performed by Shepperd et al. [29], which used the fram-

ing effect to anchor developers on pessimistic time estimates - which resulted in countering

over-optimistic time predictions.

While there is previous research on improving design rationale in software architecture [79] [80],

the work presented in this thesis is the first that introduced an intervention that was empirically

proven to counter cognitive biases in architectural decision-making.

33

3. What rationales drive architectural decisions? An empirical

inquiry

Article title What rationales drive architectural decisions? An
empirical inquiry

Authors Klara Borowa, Rafal Lewanczyk, Klaudia
Stpiczyńska, Patryk Stradomski, and Andrzej Zalewski

Publishing
venue

European Conference on Software Architecture

Year 2023
MNiSW
points

140

Contribution Original research idea, research method design,
questionnaire analysis, most of the paper writing

34

3. What rationales drive architectural decisions? An empirical inquiry

3.1. Preface

Although this paper was created as the last of all published papers presented in this thesis, it

is presented first for a specific reason. This results from a crucial research gap that existed before

its publication: there was no existing empirical research exploring what rationales motivate

practitioners during architectural decision-making. Some of these rationales were expected to be

connected with cognitive biases, possibly being cognitive bias antecedents. This, however, had

to be proven.

This research was performed in two steps. The first one was gathering data through a

questionnaire where practitioners had to answer two open-ended questions: (1) "What do you

consider when making architectural decisions?" (2) "What do your colleagues consider when they

make architectural decisions?". Participants were supposed to give a maximum of three rationales

as answers to both questions. We gathered 63 answers by distributing these questionnaires.

This questionnaire’s results were grouped into rationale categories, from which five major

rationale groups emerged: Ease of use for development activities, Maintainability, Performance,

Prior knowledge/experience in using the solution, and Time/deadlines. Additionally, we observed

two phenomena: (1) the rationales differed depending on the practitioner’s experience level, and

(2) a significant amount of practitioners believe that their colleagues make decisions based on

the same rationales.

To explore what are the reasons behind these rationales, we performed a series of 13 follow-up

interviews with questionnaire participants who agreed to it. As a result, we found a set of

"reasons behind the rationales," the three most prominent ones being: (1) Practitioner’s prior

experience, (2) Client focus, (3) Making one’s life "easy," i.e., decreasing their workload.

These findings, when viewed in the context of possible cognitive bias impact, allow us to

draw a broader picture of architectural decision-making. Clearly, practitioners mainly based

their rationales on their own personal experiences - such a way of thinking is the basis for all

three classic cognitive biases introduced by Tversky and Kahneman [33]. Representativeness

bias makes one believe that their personal experience represents a norm (e.g., if a solution

was appropriate once, it will always be), Availability makes them base assumptions on easily

available information (namely, their own experience), and anchoring makes them unlikely to

consider other points of view. Since the rationales motivating practitioners are possible cognitive

bias antecedents, the exploration of cognitive biases’ effect on architectural decision-making

is a natural extension of this research.

35

3. What rationales drive architectural decisions? An empirical inquiry

3.2. Abstract

Architectural decision-making is a crucial concern for researchers and practitioners alike.

There is a rationale behind every architectural decision that motivates an architect to choose one

architectural solution out of a set of options. This study aims to identify which categories of

rationale most frequently impact architectural decisions and investigates why these are important

to practitioners. Our research comprises two steps of empirical inquiry: a questionnaire (63

participants) and 13 interviews. As a result, we obtained a set of rationales that motivated

architects’ decisions in practice. Out of them, we extracted a list of software quality attributes

that practitioners were the most concerned about. We found that, overall, architects prefer to

choose solutions which are familiar to them or that guarantee fast software implementation.

Mid-career architects (5 to 15 years of experience) are more open to new solutions than senior and

junior practitioners. Additionally, we found that most practitioners are not concerned about the

quality attributes of compatibility and portability due to modern software development practices,

such as the prevalence of using specific standards and virtualisation/containerization.

3.3. Introduction

Understanding software architecture as a set of architectural decisions (ADs) [6] draws our

attention to the motivation underlying these decisions and - this way - the entire architecture.

Design rationale, which is a component of ADs [81], consists of the knowledge and reasoning

justifying design decisions[82].

The research on factors (including rationales) [83] that shape architectural decisions in practice

is rather scarce and seems still far from being mature. The most recent papers by Weinreich

et al. [84], Miesbauer et al. [85] and Tang et al. [82] that explore the motivations underlying

practitioners’ ADs are at least eight years old. These works are continued in more recent studies

that investigate what software quality attributes (QAs) are discussed when choosing architectural

patterns [86] and what technology features drive technology design decisions [87].

As the software development landscape changes rapidly, the general purpose of this study is

to discover what rationales, and why, currently drive ADs in practice. Such results importantly

extend our knowledge and understanding of architectural decision-making (ADM) by allowing

researchers to focus their efforts on improving ADM on the basis of current needs and practices

of architects. Additionally, we put an emphasis on QAs since they are a rationale subset that has

been of major interest for researchers [88] [86] [89].

36

3. What rationales drive architectural decisions? An empirical inquiry

Such an aim is expressed by the following research questions:

• RQ1: What rationales most frequently influence architectural decisions?

• RQ2: Which software quality attributes are usually prioritised during architectural decision-

making?

• RQ3: Why do practitioners prioritise these rationales?

In order to investigate the above problems we performed a two-phase inquiry. Firstly, we

gathered data through a questionnaire. We obtained answers from 63 practitioners. Then, we

presented the questionnaire’s results to 13 practitioners during interviews. As a result of the

questionnaire, we created a list of rationales (including quality attributes as given in ISO 25010

[90]) that practitioners of various experience levels (beginners, mid-career and experts) consider

essential. As a result of the interviews, we found out that, depending on experience level,

practitioners tend to prioritise different architectural options.

The rest of the paper has been organised as follows: Section 3.4 presents related work, Section

3.5 contains details about our research process and Section 3.6 the study’s results. We discuss

our findings in Section 3.7, present the threats to validity in Section 3.8 and conclude in Section

3.9.

3.4. Related Work

The notion that software architecture is a set of design decisions [6] has heavily impacted the

field of software architecture [88]. To enable better decision-making, researchers have explored

such areas as: human factors in ADM [83], AD models [81], mining AK [89], curating AK [91],

tools supporting decision-making [92], techniques that can aid designers in the decision-making

process [93] [94] and ADM rationale [82].

Numerous aspects make ADM an extremely challenging process. The traditional decision-

making process, which includes listing all possible alternatives and their attributes, is impractical

for software design decisions [95] because of the number of possible architectural solutions. Fur-

thermore, practitioners can be overwhelmed by the time and effort required to find architectural

information [96]. Additionally, an entirely rational design-making process is impossible as long

as it depends on human beings, that are impacted by various human factors [83].

While there exist general guidelines [94] and various tools [88] for ADM, empirical research

on ADM factors is scarce [83]. On the topic of the practitioners’ rationale behind design

decisions, several studies must be acknowledged. Firstly, the study of Tang et al. [82], reporting

37

3. What rationales drive architectural decisions? An empirical inquiry

the results of a survey on practitioners’ approach to architectural rationale. Researchers had

practitioners choose the importance of generic rationales and optionally allowed participants to

provide their own rationales. As a result, a list of 12 rationales indicated by practitioners was

made. This study’s results were later expanded by Miesbauer et al. [85] and Weinreich et al.

[84] who performed interview-based studies through which the list was expanded to include 18

rationales in total. Soliman et al. [87] researched what technology features impacted technology

design decisions. Bi et al. [86] took a different approach and researched which ISO 25010

software quality attributes [90] were most often discussed in the context of architectural patterns

on the StackOverflow platform.

We found no recent empirical research focusing widely on ADM rationale more recent than

eight years ago. As software technology evolves rapidly, the rationales could also change. Addi-

tionally, we found no studies on how rationales depend on architects’ professional experience,

which we believe could be relevant since junior and senior architects find different aspects of

ADM challenging [97].

3.5. Method

Our research comprises two phases: questionnaire and interviews. The purpose of the

questionnaire was to gather a larger sample of data that would enable us to answer RQ1 and

RQ2. The interviews let us delve deeper into the meaning and implications of the questionnaire’s

results (RQ3). Another reason for using two data-gathering methods was to achieve so-called

’methodological triangulation’ [98], which helps to strengthen the validity of our findings. The

overview of the study process is presented in Figure 3.1. The questionnaire questions, a summary

of questionnaire results, the interview plan, and interview coding details are available online

[99].

3.5.1. Questionnaire: data-gathering

The questionnaire’s [99] design was simplistic in order to avoid discouraging practitioners

from taking part and to avoid biasing the results by suggesting any specific answers. The

questionnaire was divided into four main sections:

1. Participant data: age, gender, education, years of experience in software development, role

in the company, company size, company domain.

2. An open-ended question to provide a maximum of three most often used rationales for

architectural decisions, according to the participant’s personal experience.

38

3. What rationales drive architectural decisions? An empirical inquiry

Preparation Data gathering Analysis Preparation Data gathering Analysis: Coding
(for each interview)

Questionnaire phase Interview phase

Results analysis

Update of
coding in

previously coded
transcripts
(1 author)

Coding scheme
update

Coding
negotiations
(2 authors
meeting)

Separate coding
(by 2 authors)

Performing
interviews

(13 participants)

Inviting
questionnaire
participants

that gave further
contact agreement

Questionnaire
analysis

Distributing
questionnaire

through social media
(13 participants)

Distributing
questionnaire
at conference

for IT practitioners
and students

(15 participants)

Interview
preparation

Distributing
questionnaire

at IT career fair
(35 participants)

Questionnaire
preparation

after last interviewnext interview

Figure 3.1. Study phases

3. An open-ended question to provide a maximum of three most often used rationales for

architectural decisions by the participant’s colleagues. We asked this question to investigate

if the participants believed that other practitioners have different priorities from them.

4. An optional section containing the option to provide an email and give consent for further

contact from the researchers.

In order to obtain samples for the study, we distributed the questionnaires in three different

locations:

1. During a 3-day long IT career fair at our faculty, where representatives of over 50 companies

were present. We approached each stall and gave a physical copy of the questionnaire

to the practitioners that were advertising their companies. We obtained 35 completed

questionnaires at this event.

2. During an IT conference for practitioners and students, where representatives from over 60

companies were present. We used the same strategy as the one during the career fair and

obtained 15 additional completed questionnaires.

3. We made the questionnaire available online and posted it on our personal social media

accounts; this led to additional information from 13 participants.

In total, we obtained data from 63 participants. A summary of the participants’ demographic

data is presented in Figure 3.2, and their employers’ companies’ domain and size in Figure 3.3.

3.5.2. Questionnaire: analysis

To analyse the questionnaire, we performed the following actions:

1. We divided the participants into the following groups: beginners (under five years of

39

3. What rationales drive architectural decisions? An empirical inquiry

Figure 3.2. Questionnaire participants

Figure 3.3. Questionnaire participants companies

experience), mid-career (5 to 14 years of experience), and experienced (15 or more years of

experience) practitioners.

2. We extracted the answers about the participants’ as well as their colleagues’ rationales and

analysed them separately.

3. For each of the six combinations of the above groups (participants’ experience level and

their own/colleagues’ rationales) separately, we classified the rationales (even if they were

worded differently) into categories. When applicable, we used the ISO/IEC 25010 [90]

software quality attributes as the rationale categories. We grouped rationales into categories,

since participants often used different words to explain the same factors influencing their

decision-making. A rationale category groups rationales that are similar to such a degree that

we found them almost indistinguishable. For example, we categorised all of the following

40

3. What rationales drive architectural decisions? An empirical inquiry

Table 3.1. Interview participants

No. Gender Age
(years)

Experience
(years)

Education Role Company
size (em-
ployees)

Company
domain

1 Male 23 1 Bachelor’s Software Engi-
neer

1001-5000 Infrastructure
monitoring

2 Male 22 1 Bachelor’s C++ Developer 51-200 Power Engi-
neering

3 Male 45 22 PhD Company owner 0-50 IT, Data Sci-
ence

4 Male 23 1 Bachelor’s Python Backend
Developer

51-200 Software
House

5 Male 22 1 High School Junior Developer 1001-5000 E-commerce
6 Male 23 3 Bachelor’s Junior Java Devel-

oper
over 5000 Consulting

7 Male 24 4 Bachelor’s Software Engi-
neer

51-200 Finance

8 Male 31 5 Master’s Software Devel-
oper

1001-5000 Electronics

9 Male 45 20 PhD Architect over 5000 Commerce
10 Female 25 3 Master’s NLP Engineer over 5000 R&D
11 Male 41 20 PhD CTO 201-1000 Finance
12 Male 28 5 High School Senior Testing En-

gineer
201-1000 Videogame

develop-
ment

13 Male 32 6 Master’s Senior Software
Engineering Man-
ager

over 5000 FMCG

as “Time/Deadlines”: “time that we will waste on it; how much time there is to do it;

time available to create the software; Number of hours required to write the functionality;

time-consumption of making the solution; time-consuming; deadline to deliver the project;

time available; time”. When rationales were only related to each other, like for example

“Documentation” and “Maintainability”, we did not categorise them together. Table 3.3

summarises the questionnaire analysis results.

3.5.3. Interviews: data gathering

Based on questionnaire data analysis, when creating the interview plan [99], we focused on

the following categories of observations:

1. The rationales common for 20% of the participants of each professional experience level.

2. Quality attributes of generally low interest to the architects, namely, attributes mentioned

by fewer than 5% of all the participants.

3. Cases in which answers varied among architects of different experience levels. For example,

some rationales were over the 20% cutoff score in one group but not in all of them.

We presented the results from the questionnaire in which the above cases occurred to the

41

3. What rationales drive architectural decisions? An empirical inquiry

interviewees. Then, we asked them about the reasons behind the observed level of importance of

these rationales for specific architects’ experience groups.

All 13 interviewees were recruited from the questionnaire participants. We invited to a

follow-up interview all participants that consented to a follow-up interview in the questionnaire.

Table 3.1 presents the overview of the interviewees’ characteristics.

3.5.4. Interviews: analysis

The interview recordings have been transcribed. Then we coded the transcripts by following

the subsequent steps:

1. Two separate authors coded the same transcript using the descriptive coding method [100].

This means that segments of the transcripts, which contained a relevant piece of information,

were labelled with a code that described its type of content. We started with an empty list of

codes, to avoid biasing the results towards our own ideas, and allowed the codes to emerge

during the coding process.

2. Both coding authors met to negotiate their coding [101] — they made changes to the coding

until reaching a unanimous consensus.

3. An updated list of codes was created as a result of the coding meeting.

4. One of the authors re-coded previously coded transcripts with new codes if they emerged

during the current analysis step.

5. The above steps were repeated for each interview transcript.

Codes are summarised in Table 3.2. After coding all transcripts, we analysed and discussed the

coded segments to draw conclusions.

3.6. Results

Table 3.3 presents the questionnaire results. As explained in Section 3.5.3, we consider the

rationale as important to a given group of architects if it was indicated but at least 20% of them.

Additionally, we focused on software quality attributes that were mentioned by less than 5% of

the participants and the variation in rationale prioritisation in different groups of participants.

3.6.1. RQ1 & RQ2: Most frequent rationales and prioritised software quality attributes

The rationales that most frequently occurred in the questionnaires (over 20% of participants)

were:

42

Table 3.2. Codes

Code Description Number
of occur-
rences

Number of
interviews
where code
occurred

EX Perspective/performed tasks change with
the developer’s experience

58 13

CLNT Recognising client’s needs, focusing on
the client’s benefit.

31 12

EASY Participant mentions how important ease
of use for development/maintenance is in
the project

28 13

FUT Thinking about what effects the choice
will have for the project

29 12

D Focusing on the deadline/ how much time
something will take

23 9

FAM Choosing something based on one’s famil-
iarity with it

25 9

IMP The rationale was omitted because it is
’obviously’ important

18 9

EMP Thinking how the choice will impact other
people

15 10

CR Focusing on personal growth 15 8
OUTDATED The rationale does not require much

thought because it is handled by newer
technology

13 8

NEG The participant disagrees with other practi-
tioners’ opinions (from the questionnaire)

11 7

EDU Described behaviour is an effect of educa-
tion

10 7

RARE The participant considers something as
niche or unimportant

9 5

43

Table 3.3. Questionnaire results. ISO/IEC 25010 quality attributes are marked by a bold font.

Sum Beginners Mid-career Experienced
No. Rationale category Participants Colleagues Participants Colleagues Participants Colleagues Participants Colleagues
1 Ease of use for development 23 11 16 7 2 0 5 4
2 Maintainability 15 2 12 1 2 1 1 0
3 Performance 14 6 13 6 0 0 1 0
4 Prior knowledge/experience 14 14 11 9 1 2 2 3
5 Time/deadline 12 8 10 6 1 0 1 2
6 Reliability 10 4 6 3 2 1 2 0
7 Development Project Environment 9 2 4 1 3 1 2 0
8 Cost 8 9 5 7 1 0 2 2
9 Popularity 8 8 7 5 0 1 1 2
10 Scalability 7 3 4 3 2 0 1 0
11 Business/customer requirements 7 5 4 4 1 0 2 1
12 Documentation 6 4 6 4 0 0 0 0
13 Usability 5 0 3 0 2 0 0 0
14 Security 5 2 3 2 2 0 0 0
15 Aesthetics/UX 5 2 1 1 2 0 2 1
16 Fit with existing systems/project 5 7 4 4 0 1 1 2
17 Decision-making methodology 5 4 0 0 2 1 3 3
18 Testability (simplicity of writing tests) 4 0 3 0 0 0 1 0
19 Level of complexity of the problem/system 4 1 4 1 0 0 0 0
20 Expertise of more experienced colleagues 4 1 4 1 0 0 0 0
21 Functional Suitability 3 1 2 1 0 0 1 0
22 Availability of packages 3 0 1 0 0 0 2 0
23 Team members’ preferences 3 4 2 4 0 0 1 0
24 Portability 2 2 2 1 0 0 0 1
25 System life expectancy 2 0 0 0 0 0 2 0
26 I want to add new skill to my resume 2 1 2 1 0 0 0 0
27 Compatibility 1 2 0 0 0 0 1 2
28 Return on Investment (ROI) 1 1 1 1 0 0 0 0
29 Market expectations 1 0 1 0 0 0 0 0
30 Available human resources/money 0 4 0 2 0 2 0 0
31 Bus factor 0 1 0 1 0 0 0 0
32 “It works so I should use it” 0 1 0 1 0 0 0 0
33 My colleagues have the same rationales as me 0 19 0 13 0 4 0 2

44

3. What rationales drive architectural decisions? An empirical inquiry

1. “Ease of use for development” was the dominant rationale for almost all groups of

participants. Over 40% of the beginner and expert groups believed that it was important.

However, this was not the case for mid-career practitioners, where only 15% mentioned

this rationale.

2. The quality attribute of “Maintainability” was the second most often indicated rationale,

which was mentioned by 24% of the participants. This was due to the beginners’ insistence

that this rationale is important (30% of them), though it was not similarly prioritised by

mid-career practitioners (15%) and experts (8%).

3. Both the quality attributes of “Performance” and “Prior knowledge/experience” were

mentioned by the same number of practitioners overall (22%). “Performance”, similarly

to “Maintainability”, was important to beginners (33%) but not to mid-career (0%) and to

expert practitioners (8%). “Prior knowledge/experience” of the solution, in the same way

as “Ease of use for development”, was prioritised by both beginners and experts (over

20% in both groups) but not by mid-career practitioners (only 8%).

Rationales that were overall mentioned by less than 20% of the participants but were important

for a particular group of practitioners (over 20% of that group):

1. “Time/deadline” is a rationale that was mentioned by 26% of beginners but less often by

mid-career and expert practitioners (8% in both groups).

2. “Development Project Environment”, which refers to various aspects of management and

organisation of development project (e.g. company standards, client specifics) or current

possibilities (available technologies), was important to mid-career practitioners (23%) but

less so to beginners (10%) and experts (16%).

3. A “decision-making methodology” was by experts (25%) but only a few mid-career

practitioners (8%) and no beginners.

Three software quality attributes were mentioned by less than 5% of the participants: Com-

patibility (1 participant), Portability (2 participants) and Functional Stability (3 participants).

Finally, when asked about their colleagues’ rationales, most participants wrote unprompted

in their questionnaires that their colleagues are motivated by the same rationales as they

are themselves (30%). These were not cases of copying the same answers from one question

to another but literally writing a statement about one’s colleagues. This answer dominated the

beginner (33%) and mid-career (31%) groups but occurred less frequently in the expert group

(17%).

45

3. What rationales drive architectural decisions? An empirical inquiry

3.6.2. RQ3: Rationales’ origins

By analysing the interviews, we found a key set of rationales’ origins. Some rationales and

rationale origins may slightly overlap (e.g. “Time/deadlines” rationale and “fear of deadlines”

rationale origin). This was the case when participants listed both a rationale in the questionnaire

and a rationale’s origin in the interviews. The rationale’s origins include (number of code

occurrences overall/number of interviews where code occurred):

1. Practitioner’s experience(58/13): The primary origin of the practitioners’ rationales were

their previous experiences. Beginners had limited experience, and to avoid the risk of

not performing their duties efficiently, they preferred the solutions which they had used

previously - because of that, “Ease of use for development” and “Prior knowledge” turned

out to be the prevailing rationale for them. As one of the participants stated: “(...) [junior

developers] are such fresh people, it is certainly much more convenient. Because, well,

since it’s easy to learn something [how to use a solution], it’s easy to reach the right level

quite quickly.”

Experts with significant experience also prioritised these rationales but for different reasons

– they already had knowledge that they were confident in, so they did not feel the need to

try new solutions and leave their comfort zone, e.g. “Maybe more experienced people who

worked a long time with a certain technology change it less often than people who are just

entering the IT market (...), but feel comfortable with certain technologies and have been

comfortable working with them for many years.”

The exception to this effect were mid-career practitioners who were most likely to possess

the knowledge and willingness to discover new solutions. As a participant said: “Maybe the

moderately experienced people are neither those very experienced people who have been

working in a particular technology for a longer period of time, but those who change it more

often and maybe they see that it is not that difficult, they are used to changing technologies.”

The practitioner’s experience influence was also crucial for choosing the “Time/deadline”

and “decision-making methodology” rationales. Beginners feared the possible consequences

of missing a deadline more than other practitioners. Hence, they indicated the “Time/dead-

line” rationale more frequently than more experienced architects, e.g. “People with more

experience are more assertive when it comes to deadlines and are able to say ‘no’ when

they know that it is simply impossible to do something in a certain time, and those with less

46

3. What rationales drive architectural decisions? An empirical inquiry

experience may also not be so sure that this is the moment that it is worth saying ’no’ and

not doing something, they are afraid of the deadline.”

However, using a “decision-making methodology” as their rationale’s foundation was only

possible to experienced practitioners due to their greater knowledge, e.g. “ (...) we [the

architects] are just getting used to such methodologies, acquiring them, so we will only use

them after some time.”

2. Client focus (31/12): Various rationales originated from the endeavour to meet the client’s

needs. Practitioners often prioritised “Ease of use for development” and “Time/deadline”

rationales because they strived to deliver new functionalities to the client as soon as possible,

e.g. “(...) recently there has been a lot of emphasis on time to market and deadlines for

implementing individual functionalities, which are usually short.”

Similarly, the “Development Project Environment” had to be considered to satisfy the

client’s needs. Even if two projects appeared to be the same, the environment often made a

difference in its development. As one participant stated: “Otherwise, seemingly the project

sounds the same, but in practice, the client often wants something completely different than

the previous one.”

Additionally, “Performance” was seen generally as a key software quality attribute from the

client’s perspective, since weak software performance (software freezes, long waiting times,

etc.) was seen as very problematic to the clients, e.g. “(...) usually the performance of the

system is related to the comfort of use, so it seems to me that this is also the reason why

performance is an important criterion.”

3. Making one’s life “easy” (28/13): Generally, practitioners choose solutions that they

believed would make their work as effortless as possible. This was not only related to

the “Ease of use for development” rationale but also “Prior knowledge” (the source of

information about what is “easy”) and “Maintainability” (minimisation of future work).

As one participant stated: “Some developers are lazy, which means that solutions that are

easier to maintain often scale easier and perhaps require less work or less mental effort to

add a new feature or to fix a bug.”

4. Thinking of the project’s future (29/12): In general, practitioners were aware of the

software life-cycle and knew that “Maintainability” could impact the amount of effort they

would have to put into maintaining the system in the future. However, “Ease of use for

development” was also a rationale impacted by this factor. Practitioners believed that if it

47

3. What rationales drive architectural decisions? An empirical inquiry

is easy to use a given solution, it will also be easier to find, hire and train new employees

that would work on the project in the future, e.g. “(...)the ease of training new employees to

work, whenever the software is easier to develop and is based on popular technology or the

code is transparent, it is easier to introduce someone new here.”

5. Fear of deadlines (23/9): The fear of missing a deadline had a major impact on beginner

practitioners. This was not the case for mid-career and expert practitioners since they

already had experiences with missed deadlines in their careers and had the capacity to

imagine how such a situation could be handled. For example: “I think it’s because the more

experienced ones, I also know that this is how managers and programmers work, as well as

project managers, that they know that this deadline is set with some reserve.”

6. Familiarity with a particular solution(25/9): Prior experience with a particular solution

was the main source of architectural knowledge. Since it is rarely possible to explore

all the possible alternatives, prior experiences are the primary source of information, e.g.

“Architecture, all engineering, in general, is based on experience, and experience means

things that we brokne in previous designs, in previous products. And on this experience,

which looks so negative, but is nevertheless building our knowledge, we base what we

create in the future.”.

7. “Obviousness” (18/9): In the case of the “Functional Stability” quality attribute, some

practitioners expressed the opinion that the importance of this rationale is simply obvious,

and as such, there was no need to mention it in the questionnaire, e.g. “It’s [Functional

Stability] also so mundane and part of such day-to-day work that maybe we don’t tie it to

the architecture.”.

8. Empathy (15/10): “Ease of use for development” and “Maintainability” were often priori-

tised because of the practitioners’ awareness that their colleagues will have to maintain and

further expand a system in the future, e.g. “It should be done in such a way that I would

not hurt myself or that it would not be painful for my colleagues to maintain. I see in this

perhaps some form of empathy.”.

9. Personal growth (15/8): Mid-career practitioners did not prioritise “Ease of use for devel-

opment” and “Prior knowledge” rationales, as beginners and experts did. Our participants

pointed out that mid-career practitioners are in a specific professional situation where they

can already feel confident in their basic knowledge (unlike beginners) but strive to learn

about new solutions to further develop their careers (unlike experts). As one participant

48

3. What rationales drive architectural decisions? An empirical inquiry

stated: “(...) resume driven development, i.e. we choose those technologies that will look

nice in the CV, or that will make us learn something.”.

10. New technology handles the problem (11/7): In the case of the “Compatibility”, and

“Portability’ quality attributes, practitioners believed that new technologies already solved

most problems related to these rationales. In the case of “Compatibility”, currently, existing

standards are widely used, and compatibility problems are rare. As a participant stated:

“(...) because everything is somehow compatible with each other, only a matter of certain

calling some services(...)”.

Similarly, the widespread use of virtualisation and containerisation solved most problems

with “Portability”, as a participant stated: “(...) because practically everything can be

uploaded, containerized”.

11. Practitioner’s education(10/7): “Performance” was stated to be a rationale prioritised

by beginner practitioners that recently finished their degrees in a field related to Software

Engineering. This was due to the focus on the use of optimal data structures and algorithms

during their studies, e.g. “(...) during studies and in earlier educational programming, a lot

of emphasis was placed on making these solutions work quickly. I even had one subject

where we were judged on how many minutes it took to run a program, so it stuck in my

head a bit.”.

12. Perception of the quality attribute as unimportant(9/5): Some participants stated that

in the case of the projects that they worked on, “Compatibility” and “Portability” quality

attributes were not important. For example, the project was targeted to work on a very

specific platform, as the participant stated: “(...)projects are created, for specific hardware

or for specific platforms, not multi-platform solutions.”

3.7. Discussion

Two top rationales that were not quality attributes were “Ease of use for development” and

“Prior knowledge / experience”. This result is similar to the findings of Miesbauer et al. [85] and

Weinreich et al. [84] who found that the most influential rationale was “Personal experience /

Preferences”. This implies that the current trend of researching human factors in ADM [83] [88]

is appropriate for further understanding and improving ADM. To be more specific, it seems that

practitioners prioritise minimising their own and their colleagues’ workload, both in the short

and the long term. This fits with the principle of “Simplicity – the art of maximising the amount

49

3. What rationales drive architectural decisions? An empirical inquiry

of work not done” [102] from Agile software development. However, if done inappropriately,

this can lead to consequences such as incurring architectural technical debt [103].

The quality attributes of “Maintainability” and “Performance” were perceived as the most

important out of the set of ISO 25010 software quality attributes [90]. This matches the findings

of Bi et al. [86] who found these to be the most often discussed quality attributes in the context

of architectural patterns. We further explain this phenomenon since we found that beginner

practitioners emphasise these rationales more than experts. In the case of “Maintainability”,

it seems that they wanted to avoid their own future workload, which may be perceived as an

intimidating perspective. In the case of “Performance”, beginners followed the knowledge

acquired during their formal education and the emphasis of scholars on algorithmic efficiency.

Additionally, we found that practitioners in general do not put an emphasis on the quality

attributes of “Portability” and “Compatibility”. Modern technologies deliver solutions that

well-address both these issues. In the case of “Portability”, there are many efficient tools that

resolve such problems: virtualisation, containerisation or frameworks for building multi-platform

applications. Furthermore, in some fields (like developing console video games), the hardware

on which the software will be run can be accurately predicted. Challenges with “Compatibility”

have been overcome mostly through the standardisation of the technologies used by practitioners;

for example, in the case of web applications, a REST API between the front-end and back-end

layers is a predictable solution that most would choose by default.

Finally, we discovered that depending on experience level, practitioners have a significantly

different mindset when it comes to ADM. Beginners are greatly influenced by a fear of the

unknown: they fear that it would be too hard to develop the software, or to maintain it later,

to learn new solutions during the projects, and the consequences of unmet deadlines. Experts

experience less fear of deadlines but put an emphasis on ease of development to make their

colleagues’ work easier and feel comfortable with their current practices. They were also the only

group to use any decision-making methodologies, which they found natural if they gained enough

knowledge. Lastly, mid-career practitioners are the most open to learning about new solutions

and attempting not to use ones that are not considered “easy”, to create bespoke solutions that

would fit their clients the best.

50

3. What rationales drive architectural decisions? An empirical inquiry

3.8. Threats to validity

In this Section we describe three main kinds of threats to validity [98]:

Construct Validity To find the participants’ rationales for architectural decisions, the possible

methods of enquiry are either methods based on self-reporting or observation of the participants’

work. We have chosen self-reporting methods (questionnaires and interviews) since that enabled

us to obtain data from a greater number of practitioners. However, it is still possible that the

participants’ actual rationale may differ from those that they reported. For example, they may be

impacted by cognitive biases [104] that they are not aware of.

Internal Validity To maximise the internal validity of our findings, the coding of the transcripts

was always done independently by two authors. Then, both discussed the coding until they

unanimously agreed on all codes. This was done to minimise the impact of the researcher’s bias

on the findings. However, it is possible that factors that we did not consider could play a role in

practitioners’ approach to decision-making, such as their company’s size or domain.

External Validity We used convenience sampling since it is an extreme challenge to obtain a

random generalisable sample of software practitioners. However, we strived to overcome this by

providing data source triangulation [98]: we searched for participants from three different sources

(two in-person events and one on social media). This resulted in a varied group of participants.

Though, worth noting is that the sample may be biased towards less experienced practitioners, due

to the majority of participants having less than 4 years of professional experience. Additionally,

since our results partially match results from previous studies [84] [85] [86], it seems that our

sample was big enough to give us outcomes also noticeable to other researchers.

3.9. Conclusion

In this study, we performed a mixed methods two-step empirical inquiry into the practitioners’

rationale behind their architectural decisions. The three main contributions of this study are as

follows:

1. A list of the most impactful rationales that influence practitioners’ architectural decision-making;

2. An exploration of these rationales’ origin;

3. The finding of how a practitioner’s experience has a significant impact on how they make

architectural decisions.

Future research could employ different research techniques to further confirm or disconfirm

our findings. A survey on a random generalisable sample would be beneficial, as well as

51

3. What rationales drive architectural decisions? An empirical inquiry

observational studies on practitioners that would explore their decision-making in real-time.

In accordance to our findings, since experience level seems to be a major factor shaping who

architects make their decisions researchers should take it into account during future research on

ADM.

Practitioners could benefit from our study by understanding better the way they and their

colleagues develop software architectures. The observation on the influence of experience on

ADM should also be reflected in shaping a team’s structure, e.g. it would be prudent to focus

on having mid-career (between 5 and 14 years of experience) practitioners in their teams when

working on an innovative project.

52

4. On Cognitive Biases in Architecture Decision Making

Article title On cognitive biases in architecture decision making.
Authors Andrzej Zalewski, Klara Borowa, and Andrzej

Ratkowski
Publishing

venue
European Conference on Software Architecture

Year 2017
MNiSW
points

140

Contribution Data gathering, data analysis, writing the paper’s first
draft, and making changes to the final paper.

53

4. On Cognitive Biases in Architecture Decision Making

4.1. Preface

This article was the first published from all the papers presented in this thesis. The inspiration

to do this research comes from Kahneman’s classic book "Thinking, Fast and Slow" [11] and the

few existing pieces of research on cognitive biases in architectural-decision making at that time

[22] [77].

Having basic knowledge about cognitive biases, we designed a simple workshop to gather

data from 14 practitioners about their experiences with possibly biased architectural decisions.

The main steps of the workshop were explaining the theory behind cognitive biases, gathering a

list of experiences in which participants believed a bias occurred (without naming the specific

bias), and having the participants rate how often such occurrences happened.

During analysis, we matched the participants’ stories with bias definitions and identified a list

of cognitive biases that impacted architectural decision-making. Additionally, we ranked how

often they occurred using the participants’ ratings. Finally, we analyzed how these biases may

interact with each other and various real-world software development factors.

So far, this work, in particular, has impacted software architecture research - to this day, it

has been cited 31 times, according to Google Scholar. Its main value lies in giving researchers a

specific, ranked list of biases that they should consider in the context of software architecture.

Previous work provided examples of biases impacting architectural decision-making, yet none

were gathered in such an organized manner. This list provides a cornerstone that allows the

next research steps to progress.

54

4. On Cognitive Biases in Architecture Decision Making

4.2. Abstract

The research carried out to date shows that architectural decision-making is far from being

a rational process. Architects tend to adopt a satisfying approach, rather than looking for the

optimal architecture, which is a result of many human and social factors. The results of a

workshop, carried out with 14 software engineering practitioners show that cognitive biases are

commonly present in architecture decision-making. A systematic approach to analysing the

influence of biases on decision making has been introduced. Twelve cognitive biases identified

during the workshop were analysed with regard to the elements of the decision-making context

that affected the aspects of architectural decision making. Finally, we analyse the interactions

between cognitive biases and the conditions of real-world software development.

4.3. Introduction

The concept of architectural decisions enables the design rationale and architectural knowledge

to be captured, but equally important is the focus it places on the act of deciding on software

design [6]. This has shaped anew our perception of software development as a decision-making

process, and triggered research into its nature.

The research on how architectural decisions are made revealed that, despite the intrinsic

complexity of architecting, architects as decision makers remain normal human beings: their

judgement is more often bounded rational than fully rational, which is a result of the inherent

properties of the human mind.

As normal human beings, architects are subject to cognitive biases [105]. This exploratory

paper, which has been motivated by the outcomes of a work-shop carried out with 14 software en-

gineering practitioners, investigates how cognitive biases influence architectural decision-making.

Our research focuses on answering the following research questions:

• Are biases in architecture decision making commonly observed by software engineering

practitioners?

• What are the most significant cognitive biases that influence architecture decision making?

• Which of these biases result from cognitive biases inherent to the conditions of the human

mind?

• Which elements of the decision-making context can bias architects’ decisions?

• Which aspects of architectural decision making are influenced by the biases that have been

identified?

55

4. On Cognitive Biases in Architecture Decision Making

• How do practical conditions influence the extent of the influence of the biases on architec-

tural decision making?

The research presented in this paper shows that biases are commonly observed by software

practitioners (Section 4.5). In order to capture how cognitive biases influence architectural

decision making, we propose a model comprising contextual factors that are transformed by

the biases into influence on the identified aspects of the architectural decision-making process

(Section 4.5.2). The identified cognitive biases are presented and discussed according to this

model (Section 4.5.2). The ways in which the practical conditions of architecture decision

making affect the ‘mechanics’ of biases’ influence is presented in Section 4.6. The discussion of

the findings (Section 4.8) is presented in Section 6, the summary of the paper and the research

outlook in Section 4.9.

4.4. Related Work

The social and human factors in software engineering have been studied since the advent of

software engineering as a scientific discipline – compare reports from NATO conferences from

1968 and 1969 [106], [107]. Probably the earliest observation of the influence of social factors

on software architecture is the now famous Conway’s law [107].

The research on cognitive biases was pioneered by Tversky and Kahneman (e.g. [105], [108],

[10]), and the latter was awarded a Noble Prize. Their research has been later extended by many

researchers, e.g. [109], [42], [110]. Kahneman and Renshon [111] define cognitive biases as

“predictable errors in the ways that individuals interpret information and make decisions”.

The dual process theory, as stated by Kahneman [105], is one widely known and accepted in

psychology and helps to explain the mechanisms of the human mind. According to the theory,

our thoughts are controlled by two parallel systems: System 1 and System 2.

System 1 controls the part of our mind that is fast, runs effortlessly, and completely out of our

control. It is very useful, letting us, for example, instantly react to danger and save our lives in a

dire situation. Sadly, its associative nature may make our line of thought illogical, often creating

associations where there are none. System 1 is unable to process rule-based logic, and thus does

not always perform well.

System 2 is the complete opposite of System 1. It is slow, requires a great amount of conscious

effort to use, and is very logical. Since the use of System 1 is something unavoidable, System 2

serves the purpose of correcting the premature conclusions of System 1, but only if we put effort

56

4. On Cognitive Biases in Architecture Decision Making

into it. It is when this correction does not happen, or is not strong enough, that cognitive biases

occur.

The process of architectural decision making has been thoroughly investigated by Zannier et

al. [112] in 2007. Their research shows that architects use naturalistic (looking for a satisfactory

solution) or rational decision making (looking for an optimal solution). The naturalistic approach

is common for poorly-structured problems, while the rational one for well-structured problems.

In 2015, Tang and van Vliet observed [113] that most architects need only a few reasons

before concluding a decision, which is a result of satisficing behaviour of naturalistic decision

making.

The research record on the role of biases in software engineering in general, and in software

architecture, is rather small. Tang and van Vliet, in 2016 [19], indicate only a couple of papers

that can be related to the role of biases in design processes. They show some examples of

anchoring, framing and confirmation biases in software engineering, and conclude that “biases

do play a role; and we probably cannot fully prevent them from occurring; they are simply too

human.”

The research presented in this paper aims to expand upon these observations, and to systema-

tise the way we analyse how cognitive biases influence architectural decision making.

4.5. Investigating Biases in Architectural Decision Making

4.5.1. Workshop on Biases in Architecture Decision-Making

Fourteen software engineering practitioners with a wide variety of professional experience

(8 novices – 1-2 years of experience and 6 experts with at least 10 years of experience) were

gathered on a workshop. The purpose was to gather data about biases that may have an influence

over the process of software development and sort out those that affect architecture-decision

making. A few days before the workshop, participants were provided with a list of 105 cognitive

biases with their definitions and examples that purposefully were not connected to software

architecture. They were supposed to get acquainted with them as a form of preparation. The

workshop agenda was as follows:

• Short presentation on cognitive biases – the notion of ‘cognitive bias’ was explained

and most important biases, such as Anchoring [10], the Bandwagon Effect [109], the

Dunning-Kruger Effect [114] and the Law of the Instrument [115], were discussed;

57

4. On Cognitive Biases in Architecture Decision Making

• Poll of the participants – they were asked to write down any examples of bias-es that they

could have observed from their previous projects;

• Survey and an open discussion on biases indicated by the participants, aimed at improving

the understanding of people’s statements;

• Rating of the biases - each participant was asked to rate the frequency of cases when they

experienced the effect of every cognitive bias listed (on a scale from 0 to 3, where 0 means

something that was never observed, and 3 means an often experienced phenomenon);

• Identifying related cognitive biases;

• Wrap-up and conclusion.

4.5.2. Influence of Cognitive Biases on Architecture Decision-Making

Expanding on the workshop results, we discussed and analysed the identified biases in order

to identify how they influence the decision-making process. As a result we developed the model

presented in Fig. 1.

Fig. 1 shows that cognitive biases subconsciously influence the decision-making process by

associating some contextual factors with a given architectural problem. These factors usually

have no connection, or just a limited connection, with the analysed issue itself. The biases include

these factors into the decision-making process and alter the critical aspects of the decision-making

process. Analysing the biases on the basis of our experience we identified sets of:

• contextual factors affecting architecture decision making, for example: form of presentation,

architect’s beliefs, “topics of the year”, time spent on a given design, order, etc. – for a

complete list see Table 4.2, Column (3).

• aspects of architecture decision-making process affected by the biases, for example such ar-

chitect’s preferences (expressed by a decision’s rationale), scope of considered architectural

issues, etc. – for a complete list see Table 4.2, Column (4).

Below we describe and study in a greater detail the cognitive biases indicated in Table 4.1.

Framing Effect. The example that achieved the highest average rating in the experiment

was representative of the framing effect. The bias itself happens when information is judged

differently on the basis of how it was presented. This effect was examined thoroughly by Tversky

and Kahneman [108]. In the course of their research, they discovered that slight differences in

the formulation of the choice problem may significantly impact decision making.

58

4. On Cognitive Biases in Architecture Decision Making

Table 4.1. Biases relevant to architecture decision making indicated by the workshop participants

Reported Bias Related cognitive
bias

Average
Frequency
Assessment

Judging the quality of a system by the form of its
presentation by marketing specialists.

Framing effect 2.58

Estimating the time needed to complete a task wrongly,
because of the expectations placed on the development
team by the client, rather than the true complexity of
the problem.

Confirmation bias 2.33

Excessive overvaluation of a solution that we created
ourselves.

IKEA effect 2.33

Spending long hours on meetings discussing trivial
problems (like whether we should use spaces or tabs
in our code) instead of truly important ones.

Parkinson’s Law
of triviality

2.25

Insisting on continuing using certain COTS despite the
long record of errors

Anchoring 2.25

Errors created by miscommunication between the tech-
nical staff and a client, because of them having a com-
pletely different background.

Curse of knowl-
edge

2.16

Focusing mainly on a set of standards, believing that
if they are met, then the quality of the product will be
good.

Anchoring 2.16

Belief that "new is better". Quick abandonment of
old tools and technologies while they are still properly
working.

Pro-innovation
bias

2.08

Dismissing serious issues as trivial, without any further
thought.

Parkinson’s Law
of triviality

2.08

Evasion of solutions that were not used previously in
our industry.

IKEA effect 2.00

Underestimating a problem by assuming that it could
be solved by "writing some code", even with no de-
tailed plan of the implementation.

Planning fallacy 1.91

Wrongly assuming that a solution found on the web is
correct and appropriate for our problem, especially if
it is popular.

Bandwagon effect 1.83

Avoidance of redoing work on a system that was al-
ready done – even if it was done poorly.

Irrational escala-
tion

1.75

Being unable to admit that there is an error. Logic
similar to "it’s not a bug, it’s a feature".

Anchoring 1.75

Applying the design patterns that we know everywhere
- even if it’s not the best solution.

Law of the instru-
ment

1.66

Underestimating the possible load put on a system.
Guessing without any evidence to support our claims.

Optimism bias 1.66

Focusing only on hardware when solving optimisation
problems.

Anchoring 1.36

59

4. On Cognitive Biases in Architecture Decision Making

Figure 4.1. How biases influence architecture decision making

The exact scenario that the workshop participants pointed at was that software products are

often purchased not on the basis of their quality, but of the way they are advertised, for example:

properly advertised products (like COTS) are more likely to be chosen, even if they are less

suited to the needs of the project. The framing bias affects mainly architect’s preferences, scope

of considered architectural issues and alternatives.

Confirmation Bias. Another widely appearing case is an example of conformation bias. Con-

firmation bias itself, as stated by Nickerson [116], is a natural tendency to look for evidence

supporting our claims, because we believe that this is an effective way of showing what is right,

if it really is right.

The subjects linked the wrong estimation of the time needed to complete a project with their

superiors’ (or clients’) expectations. Concerning architectural decision making, it is easy to

observe a tendency to look for arguments confirming our beliefs that certain solutions are better

than others. Believers of micro-services would always find evidence to confirm it is a best choice.

In order to confirm their beliefs, architects may narrow the scope of considered architectural

issues, requirements and alternatives. Such an architect would prefer to choose the options,

which comply with his beliefs.

IKEA Effect. Easily associated with the phenomenon of the globally-known producer of

ready-to-assemble furniture – the IKEA effect is one that makes us biased when it comes to

60

4. On Cognitive Biases in Architecture Decision Making

items we have created or assembled ourselves [117]. What makes the furniture bought in IKEA

so special, is that when you assemble it yourself, the false belief that it’s worth more than you

paid for it is created. All because you had to put your own time and effort into it. A similar effect

can be observed in almost every domain, not only the furniture business. When comparing to the

products of our competitors, even if they are renowned professionals in their field, we are easy to

prey for the unstoppable gut feeling that our creation is the best.

The participants also pointed to the reverse form of this effect – that we tend to avoid solutions

that have not been yet used in our industry, thus boxing our-selves in a small pool of alternative

choices. It is a popular phenomenon that authors of a given system (application etc.) are rather

reluctant to replace it even if a definitely better one is currently available. This will certainly

narrow the set of considered alternatives and obviously affect architect’s preferences.

Parkinson’s Law of Triviality. According to Parkinson’s Law: "work expands to fill the time

available". This unavoidable effect rules over most workplaces, although most managers would

prefer to overlook it. Parkinson’s Law of triviality is a narrower version of Parkinson’s Law

stating that we spend an enormous amount of time debating over trivial unimportant issues [118].

Most of our subjects had the unfortunate displeasure of taking part in meetings that seemed to

be endless and led to nothing. Although wasting time does not have to lead to wrong decisions

by itself, it does shorten the time available to resolve more complex issues. This may result in

‘system 1’ being used to resolve the crucial problems instead of ‘system 2’. This may indirectly

affect all the aspects of architectural decision making. Anchoring.

The effect of anchoring is created by the way in which the human brain estimates probabilities.

Naturally, we tend to cling to the first fact that comes to our mind when contemplating an issue.

This means that the first piece of information we obtained, or one that we have a particularly fond

memory of, heavily influences decision making [10]. When ’anchored’ to an idea, it becomes

hard to notice different solutions, and even if we do, it is very unlikely that we will choose them.

Although examples of the anchoring effect were rated very differently by the participants,

it is worth noting that this was the bias for which they found the greatest amount of examples.

Anchoring seems to have an influence over almost every kind of decision: hardware, technologies,

design and even implementation. It influences mainly architect’s preferences but also possibly

the scope and perception of importance of requirements.

61

4. On Cognitive Biases in Architecture Decision Making

Curse of Knowledge. We may be put in a situation when we have to communicate with someone

of a completely different background, or with a different level of experience, or even simply

someone younger than us. We fall prey of the curse of knowledge, if at some point we falsely

assume that the other side possesses the same knowledge that we have about any kind of issue.

This may be more apparent in contacts be-tween children and adults, when the young ones find it

hard to grasp concepts that are new to them, but adult relations are not free from this effect [110].

The curse may cause misunderstandings at any level of human interaction, which is especially

crucial when understanding the requirements of our client and choosing appropriate solutions for

their problems. Team members with different experience levels can also be influenced when an

issue is not explained properly, they can misunderstand the way in which their tasks should be

handled. Therefore, the curse of knowledge bias influences the scope of requirements and the

architect’s perception of their priorities, as well as scope of considered architectural issues and

alternatives, and as a result this may also alter architect’s preferences.

Pro-innovation Bias. The false belief that innovation should always be adopted is what we

call the pro-innovation bias [119]. Humans naturally have a positive attitude associated with

innovation. However, it does not mean that innovation should always be pursued.

The pursuit of a novel solution is not always necessary; sometimes it may even be harmful.

What needs to be taken into account is the high risk of every innovative project. If a stable and

reliable system is to be created in a reasonable time-frame, usually innovation should be avoided.

As one of the subjects pointed out, it is not always the case that potentially high rewards await

those that successfully bring new ideas to life. Relating these observations into architectural

decision making, we observe that pro-innovation bias means that innovative design alternatives

are considered and preferred.

Planning Fallacy. The planning fallacy is the tendency to underestimate the time required to

complete a task. Interestingly, it seems to affect the individuals who are supposed to complete

the tasks more than observers – of course, if they have information about the individuals’ past

performance [42].

This cognitive bias has a great influence over the planning phase of any project. The amount

of information needed to avoid it is so big that it is almost impossible to process it, especially if

a problem is complex.

62

4. On Cognitive Biases in Architecture Decision Making

Although various methodologies have their ways of soothing this problem (e.g. Planning

Poker in Scrum), there are almost none that can prevent it on the early decision-making level.

Let us also observe that the planning fallacy may affect the preferences of an architect who may

choose solutions which are more difficult to implement than he thought when making a decision.

Bandwagon Effect. The bandwagon effect is a universal phenomenon that appears in almost

any domain where human beings are given a choice. People naturally want to wear, buy, do,

consume and behave like their fellows, thus becoming part of a group [109]. This results in

popular choices and popular decisions becoming even more popular.

The danger this bias poses should not be downplayed – it puts our mind in a small box,

limiting our possibilities and potentially forces bad decisions on us. Especially in cases of

pressure from higher-ups to solve a problem in the way they wish us to. In some cases even,

due to the organisation culture in a company, it may even be impossible to have any influence

on this kind of decisions, which could result in choosing solutions being very far from perfect.

Therefore the bandwagon makes an architect to prefer the same solutions that have already been

widely accepted by a similar organisations, by an industry branch or our community.

Irrational Escalation. Irrational escalation takes place when one continues to commit to an

initial course of action, even if it is obviously no longer the most beneficial choice [120].

As the participants noticed, this may affect performance when old technologies, code or

components that are unfit for the task, are forced on us. Often these old products should have

been abandoned long ago due to their doubtful quality, but since at some point they were invested

in, there is a stubborn reluctance to let go of them. Irrational escalation means that architect gets

fixed on an existing solution.

Optimism Bias. We do not usually assume failure before trying something. Most healthy

people’s brains are hardwired that way [121]. When writing his example, one of our participants

told us a story where a client he worked for judged how many mes-sages his system would

have to handle daily. Unfortunately, in reality, the estimated value turned out to be a hundred

times too low, which triggered later multiple serious issues. As this example shows, being

overly optimistic can hurt badly not only planning, but the architected system’s quality as well.

Architect’s optimism can potentially influence all the aspects of architectural decision-making.

63

4. On Cognitive Biases in Architecture Decision Making

Law of the Instrument. Known in software architecture as the Golden Hammer anti-pattern

[115] - when a single technology or design pattern is used in every possible place. This obviously

results in the creation of numerous inefficient and mismatched solutions. The bias experienced

here may simply be a symptom of the lack of necessary skill or knowledge that forces us to use

well-known solutions. Such cases were pointed out by the participants of the workshop.

Furthermore, there is one more scenario that requires further consideration – does spending

money on a technology in the past force us to use it? This seems to be the case in many big

companies, where decisions to invest in expensive technologies are often made independently of

the technical context of specific projects.

The above findings have been summarised in Table4.2. Note that in Column (3), only the

most important factors influencing the decision making have been listed. Naturally, there are

numerous other factors that may modulate (magnify or diminish) the influence posed by a give

cognitive bias, for example the architect’s knowledge/experience, organisation’s culture

Table 4.2. Influence of cognitive biases on architecture decision making

Bias (1) Description (2) Main contextual factors

that influence architect’s

judgement (3)

Influenced aspects of

architecture decision

making (4)

Framing effect Drawing different

conclusions from

the same informa-

tion depending on

the form of pre-

sentation [108]

Form of presentation Architect’s pref-

erences, scope

of considered

architectural issues

and alternatives

Confirmation bias Focus on search-

ing for facts that

confirms one’s be-

liefs, while ignor-

ing opposing in-

formation. [116]

The architect’s beliefs All the aspects.

64

4. On Cognitive Biases in Architecture Decision Making

IKEA effect Overvaluing

items that were

created or

assembled by us

personally. [117]

Who was the author of a

given design; time spent

on a given design.

Scope of considered

alternatives, prefer-

ences.

Parkinson’s Law

of triviality

Focusing time

and effort on

trivial matters

while often

omitting the truly

important ones.

[118]

None. All the aspects.

Anchoring Relying on one

piece of informa-

tion more heav-

ily than any other,

usually on the first

one that we were

exposed to. [10]

Order of obtaining infor-

mation.

Scope and percep-

tion of importance of

considered require-

ments; preferences.

Curse of knowl-

edge

When individuals,

due to having a

different level of

knowledge, inter-

pret facts differ-

ently.[110]

The knowledge, experi-

ence and background of

the stakeholders.

All the aspects.

Pro-innovation

bias

An overly opti-

mistic approach

in adopting in-

novative solutions.

[119]

The architect’s state of

mind with respect to in-

novative solutions.

Preferences, scope

of considered alterna-

tives.

65

4. On Cognitive Biases in Architecture Decision Making

Planning fallacy Underestimation

of the time it will

take to complete

a task. [42]

Problem complexity Preferences

Bandwagon effect The phenomenon

of people more

likely adapting

ideas/buying

products that

have already been

widely accepted.

[109]

Existing widely

accepted solutions.

Preferences

Irrational escala-

tion

Continuing an

action/invest-

ment, because of

a similar prior

one, even if the

previous one

turned out to be

a wrong decision.

[120]

Existence of an initial

solution, course of ac-

tion contradicting the

use of an initial solu-

tion.

Preferences

Law of the instru-

ment

Using a tool/skill

that you possess

everywhere, even

in contexts where

it is not appropri-

ate. [115]

Architectural solutions

focal for an architect.

Scope of considered

alternatives, prefer-

ences.

66

4. On Cognitive Biases in Architecture Decision Making

Optimism bias Overestimating

the probability

of favourable

outcomes of our

decisions. [121]

The architect’s state of

mind.

All the aspects

4.6. Cognitive Biases in the Practical Conditions of Architectural Decision Making

Having established that cognitive biases are a common phenomenon in architecture deci-

sion making, we explore real-world factors that can influence their manifestation or affect the

magnitude of their influence on architecture decision making.

Biases and Time. Cognitive biases are an integral element of human nature. They have been

shaped by the evolution of the human mind, and as such are a result of the adaptation to the

conditions of the environment. Although they possibly distract architects from crafting a fully

rational, thoroughly deliberated design, they potentially enable the qualities desirable by today’s

hectic software industry: rapid architecting and quick response to changes or emergencies.

As the “need for speed” concerns more and more software engineers, the role of System 1

will certainly be increasing at the cost of diminishing the role of System 2. It means that even

more decisions will be made intuitively without a thorough deliberation. This may substantially

hinder the quality of a software architecture. At the same time, architecting efficiently under

the pressure of time is something very desirable in the frenetic software industry, as well as in

emergency cases.

It seems that there are two basic ways of addressing this challenge:

• Applying debiasing techniques — this seems to be generally difficult, as the main factor

limiting rational judgement is the lack of time and other external pressures. In order to

ensure rational decision making, we have to give architects more time to conclude a decision

and to restrain the external pressures. This is in many cases impossible, as we have limited

or no control over the conditions that are external to architectural decision making;

• Accepting “the rules of the game” (biases) and trying to exploit them to our advantage — this

requires the development of techniques that lead to reasonable architectures under pressure

of time. Hypothesising further, they could take the form of a specific training for architects,

probably similar to those used by students preparing for programming competitions: this

67

4. On Cognitive Biases in Architecture Decision Making

training supposedly makes system 1 closer to system 2 with regard to algorithms and

computer programming, as trained students decide at a glance which algorithms should be

used in order to solve their exercise.

Biases and Teams. Applying group architecture decision making techniques has the potential

to limit the influence of biases, as decisions are made by people with different mindsets. This

justifies assessing an architecture by a group of stakeholders, such as in ATAM. At the same

time, group decision making brings with it the risk posed by the ‘law of triviality’ bias.

Biases and Cultural Factors. Cultural factors may magnify or diminish the influence of

cognitive biases. For example, in many cultures it is difficult for people to admit they cannot

under-stand something or accomplish a certain design. This will certainly strengthen the curse of

knowledge bias.

Biases and Tools and Methodologies. It is also important to recognise that cognitive biases

introduce a feedback be-tween what we create and how it is created, i.e. what we create,

what we know influences how it is created by us. This is exactly what most of the biases

do – consider, for example, anchoring bias, irrational escalation and the law of instrument

biases. Therefore, it is worth investigating how different software development methodologies,

architecture decision-making techniques, software development tools etc. interact with cognitive

biases and vice versa.

4.7. Results

RQ.1 Are biases in architecture decision making commonly observed by software engineering

practitioners? It turned out that the participants commonly observe biases in deciding on

soft-ware design. Both novices (less than 2 years of experience) and experts (more than 10

years of experience) in software engineering noticed biases. Novices indicated on average 1 bias

each, experts about 4 biases each. Experts have a much broader experience than novices, which

explains the observed difference.

RQ.2. What are the most significant biases in architecture decision-making? As a result of

our research, we identified 12 cognitive biases that influence architecture decision making. The

list of these can be found in Tables 4.1 and 4.2.

68

4. On Cognitive Biases in Architecture Decision Making

RQ.3. Which of these biases result from cognitive biases inherent to the conditions of the

human mind? All these biases, concerning architectural decision making, indicated by the

workshop participants and listed in Table 4.1, can be related to well-known cognitive biases.

RQ.4. Which elements of the decision-making context can bias architects’ decisions? These

identified elements of the decision-making context that bias architects’ decisions are: form

of presentation, the architect’s beliefs, who was the author of a given design, the time spent

on a given design, the order of obtaining information, the knowledge, experience and back-

ground of the stakeholders, the architect’s state of mind, the problem complexity, the existing

widely-accepted solutions, the course of action contradicting the use of an initial solution, and

architectural solutions focal for an architect.

RQ.5. Which aspects of architectural decision making are influenced by the biases that

have been identified? The above aspects of architectural decision making are: the architect’s

preferences (finally expressed by the rationale for a decision), the scope of the considered

architectural issues, alternatives and requirements, and the perception of the importance of

requirements (compare Section 4.5 and Table 4.2).

RQ.6. How do practical conditions influence the extent of the biases’ influence on architectural

decision making? Time, teams, cultural factors as well as tools and methodologies used for

soft-ware development can affect the extent of the biases’ influence on architecture decision

making.

4.8. Discussion, Limitations

The volume of research on cognitive biases in software engineering is rather small (compare

Section 4.4). Let us observe that our research confirms the findings of Tang and van Vliet [19],

namely, that anchoring, framing and confirmation biases are among the most often observed by

software engineering practitioners as influencing architectural decision making.

The contribution of this paper comprises:

• the proposition of a model of how biases influence architectural decision making, which

enables a systematic, uniform analysis of various biases;

• the identification of 12 cognitive biases that influence architectural decision making;

69

4. On Cognitive Biases in Architecture Decision Making

• an analysis of how each bias affects decision making, by identifying the elements of the

model mentioned above (elements of the context affecting decision making and aspects of

the decision-making process influenced by each bias);

• an analysis and identification of real-world factors that can potentially influence the extent

of the influence of biases on architecture decision making.

The obvious limitation of the presented results are:

• the number of workshop participants may influence the representativeness of the results;

• although the claims of Section 4.6 seem to be logically sound, the analysis of real-world

factors is only exploratory, hence it requires empirical substantiation to strengthen the

claims of Section 4.6.

To provide an environment that would, as much as possible, neutralize the effects of additional

biases and mistakes from the participants, all of them were informed thoroughly about the topic

of cognitive biases both before and during the workshop which is described in more detail in

Section 4.5.

4.9. Summary and Research Outlook

Cognitive biases are commonly present in architecture decision making. By asking practition-

ers, we identified 12 cognitive biases that can be observed most frequently. In order to analyse

their influence on architectural decision making in a uniform way, we have developed a model of

how biases ‘work’.

The common presents of cognitive biases is both virtue and vice. On one side, they enable

rapid architecting by an intuitive resolution of the architectural is-sues, on the other, they may

lead to sub-optimal solutions and in extreme cases to a design disaster. We can either try to

accept and exploit them, or fight them. Probably, we need a kind of a decision-making approach

that balances ‘system 1’ and ‘system 2’ decision making.

The further research outlook includes:

• obtaining a more statistically significant confirmation of the above results by interviews

with a larger group of practitioners or by a broader industrial survey;

• investigating the interactions that may exist between the biases;

• developing techniques of using the knowledge about biases and their influence on decision-

making process, in order to align the architecting process with the stakeholders’ expecta-

tions;

70

4. On Cognitive Biases in Architecture Decision Making

• carrying out an in-depth analysis of each of the identified biases.

71

5. The Influence of Cognitive Biases on Architectural

Technical Debt

Article title The influence of cognitive biases on architectural
technical debt.

Authors Klara Borowa, Andrzej Zalewski, and Szymon Kijas
Publishing

venue
International Conference on Software Architecture

Year 2021
MNiSW
points

140

Contribution Original research idea, research method design, data
gathering, half of the data analysis (coding), most of

the paper writing.

72

5. The Influence of Cognitive Biases on Architectural Technical Debt

5.1. Preface

Technical debt is a term used to define various software-related constructs that are beneficial

in the short term and may possibly be harmful in the long term. In particular, technical debt

impacts two software quality attributes: maintainability and evolvability [103]

There are various types of technical debt, depending on software artifacts, e.g., code debt,

requirements debt, test debt, and notably - architectural technical debt [122].

Architectural, technical debt, being this paper’s focus, is considered the most dangerous,

long-lasting type of technical debt [24] since there are no straightforward methods of repaying

such debt [28]. Additionally, architectural design decisions can be a source of architectural

technical debt [25].

Having discovered what cognitive biases are most likely to impact architectural decision-

making (Chapter 4), the next step was to find a specific real-life impact that is negative.

This paper presents an interview study performed with 12 practitioners. This study found

which biases (optimism, anchoring, and confirmation bias) are the most important when it comes

to causing unnecessary and dangerous architectural technical debt. Additionally, the antecedents

of bias occurrence, as well as the consequences of the technical debt items described by the

participants, were reported in this study.

This chapter’s purpose is to show how dangerous cognitive biases’ impact on architectural

decision-making can be. In this case, the consequences of harmful architectural technical debt

were explored.

Because of cognitive biases, architects may incur architectural technical debt unintentionally,

which may severely harm the system’s maintainability and evolvability. A debiasing interven-

tion should make this less likely to occur and, as such, improve the quality of the designed

architectures.

73

5. The Influence of Cognitive Biases on Architectural Technical Debt

5.2. Abstract

Cognitive biases exert a significant influence on human thinking and decision-making. In

order to identify how they influence the occurrence of architectural technical debt, a series of

semi-structured interviews with software architects was performed. The results show which

classes of architectural technical debt originate from cognitive biases, and reveal the antecedents

of technical debt items (classes) through biases. This way, we analysed how and when cognitive

biases lead to the creation of technical debt. We also identified a set of debiasing techniques that

can be used in order to prevent the negative influence of cognitive biases. The observations of

the role of organisational culture in the avoidance of inadvertent technical debt throw a new light

on that issue.

5.3. Introduction

Technical debt is a metaphor first introduced by Cunningham [123] in order to explain the need

of refactoring to non-technical stakeholders. It represents experiences that are common to many

contemporary software system developers. Namely, the need to compromise between software

quality (esp. internal) and other non-technical requirements, such as time-to-release/market.

Despite the intense research undertaken to date, the mechanics of the process by which software

technical debt arises is still far from being fully explained. This hinders the development and

application of systematic technical debt management approaches.

The main factors that produce the above research challenge are:

• the substantial variety of types of technical debt (testing [124], source code [125], architec-

tural [126], etc.);

• the variety of factors that contribute to the creation of technical debt [127] [125];

• the social and psychological nature of the phenomenon of technical debt [128] and

• the intrinsic complexity of the mechanisms underlying the creation of technical debt,

resulting from its nature.

Technical debt, whether taken on deliberately or inadvertently, is always rooted in human

thinking and/or its limitations. Cognitive biases are an important factor that shape human thinking

and decision-making [14], often distorting its results, making decisions diverge from those fully

rational ones. As a result, it is important and necessary to analyse the influences of cognitive bias

on the emergence of technical debt, as this aids an understanding of how technical debt arises,

and leads to the development of efficient management strategies.

74

5. The Influence of Cognitive Biases on Architectural Technical Debt

This paper presents our research on the influence of cognitive biases on the occurrence of

architectural technical debt (ATD). It was focused on the following research questions:

• RQ1. Do cognitive biases influence the occurrence of architectural technical debt?

• RQ2. Which cognitive biases have an impact on architectural technical debt?

• RQ3. Which architectural technical debt items are most frequently affected by cognitive

biases?

• RQ4. What are the antecedents of a harmful influence of cognitive biases on architectural

technical debt?

• RQ5. What debiasing techniques can be used to minimise the negative effects of cognitive

biases?

In order to answer the above questions, we performed semi-structured interviews with 12

architect-practitioners and analysed their outcomes. Detailed information on the research meth-

ods can be found in Section 5.5, which is preceded by an overview of the current state of research

in Section 5.4. The research outcomes are presented in Section 5.6 and discussed in Section

5.7. The threats to validity are discussed in Section 5.8 and the outcomes summary and further

research outlook is presented in Section 5.9.

5.4. Related Work

Cognitive biases, originally observed by Kahneman and Tversky [33], [11], are a phenomenon

inherent to the human mind. They are rooted in the duality of the human reasoning process –

according to Kahneman and Tversky – there are two systems responsible problem resolution

that exist and operate within human mind. System 1, which is responsible for quick intuitive

decisions based on a limited scope of information. System 2, which is suited for logical and fully

rational reasoning on the basis on a broader set of information. System 2 is invoked consciously

whenever we analyse and rationally resolve problems. If we do not consciously and carefully

consider our decisions (i.e. by employing rational thinking of System 2), System 1 will draw

premature conclusions that will not get corrected by System 2. In such case, we can say that a

cognitive bias has influenced our reasoning and its outcomes.

The possible influence of cognitive biases on Software Engineering has been already a topic

of interest for researchers for over two decades [52]. Cognitive biases may possibly influence

any Software Engineering activity [14], be it requirements engineering [51], design [129],

75

5. The Influence of Cognitive Biases on Architectural Technical Debt

development [20] or testing [55]. Architecture decision-making [130] is also not excluded from

the impact of cognitive biases [22], [77], [26].

The core thesis of this paper, whereby cognitive biases, by distorting the decision-making

process, may contribute to taking on technical debt, is at an early stage of research. Only papers

[20], [128] [127] indicate that such an influence is possible, though there have been no detailed

investigations on this topic.

Technical debt has been a topic of extensive study in the recent years. It has resulted in a huge

number of papers, including systematic literature reviews [28], [131], [132] and even a tertiary

study [133] summarising the state of research on technical debt.

Architectural technical debt (ATD) is the type of TD that occurs as a result of sub-optimal ar-

chitectural decisions [24]. ATD can be especially dangerous since it may hinder the development

of future software features [134]. According to Ernst et al. [135] – "architectural issues are the

greatest source of technical debt." The purpose of this paper is to expand the existing knowledge

of how architectural technical debt arises by analysing how cognitive biases contribute to its

emergence.

5.5. Research Method

5.5.1. Cognitive biases

The number of cognitive biases that possibly can have an influence on software development

is vast [14]. As it is not feasible to analyse every cognitive bias in a single study, we decided to

focus on the biases listed as the most relevant for architecture decision-making in the exploratory

work of Zalewski et al. [26]. In this work, the researchers attempted to elicit which cognitive

biases have the most significant impact on architecture decision-making. These are:

• The framing effect – the tendency to judge information and make decisions based on the

how the data is presented [136].

• Confirmation bias – this effect influences individuals that have a strong belief they do not

want disconfirmed. As such, they search only for information confirming this belief, and

ignore any proof that they may be in the wrong [116].

• Anchoring bias – This bias occurs when one’s judgement is strongly influenced by the first

piece of information given to them. [137] Thus, it often results in individuals having an

irrational preference for the first solution/idea that they came up with or heard about from

someone else.

76

5. The Influence of Cognitive Biases on Architectural Technical Debt

• Curse of knowledge bias – this cognitive bias manifests itself in experts that consider part

of their knowledge as obvious, which then results in miscommunication when they interact

with other people [138].

• IKEA effect bias – is the irrational preference for solutions that have been at least partially

developed (or assembled) by ourselves [139].

• Parkinson’s Law of triviality bias– when a disproportionately large amount of time and

effort is put into performing trivial tasks and solving trivial problems [140].

• Pro-innovation bias – the assumption that innovation is a value in itself. Which means that

new solutions should always be adopted everywhere, as soon as possible [141].

• Planning fallacy bias – the tendency to underestimate the time necessary to complete a

given task [142].

• Bandwagon effect bias – the desire to "join the crowd" and do what others do [143]. This

means that popularity becomes the main factor taken into account when choosing between

options.

• Irrational escalation bias – the irrational impulse to continue wasting resources on an

investment that is not cost-effective [144].

• Law of the instrument bias – sometimes referred to as the "law of the hammer" since when

you own a hammer, everything seems to be a nail [145]. This law states that we tend to

overuse tools and solutions that we already own or are familiar with.

• Optimism bias – the unjustified belief that in our case, in the same scenario, we are more

likely to obtain a positive outcome than others[146]. This effect makes individuals more

liable to make risky decisions, despite evidence that it may not be reasonable.

5.5.2. Architectural Debt items

Having prepared a list of biases worth exploring, we also had to specify the kinds of ar-

chitectural technical debt to be researched. There are different approaches to categorising

ATD [147], [148], but for this purpose we decided to use the architectural technical debt items

defined by Verdecchia et al. [127] as the most commonly occurring. We hoped that, since this

categorisation emerged from gathering data during interviews, it will also be easily understood

by our participants. Those items [127] include:

• Re-inventing the Wheel – which manifests itself when we use a self-developed component

rather than a stable, verified one that is easily available.

77

5. The Influence of Cognitive Biases on Architectural Technical Debt

• New Context, Old Architecture – which occurs when not enough effort is put into keeping

the evolution of the architecture appropriate for its context.

• The Minimum Viable Product (MVP) that stuck – which appears when software that was

hurriedly developed for a simple temporary solution ends up becoming part of larger system

that is still evolving. Architectural gaps of the MVP solution are inherited by the system.

• The Workaround that stayed – which appears when a temporary workaround is used in

order to sidestep architectural constraints. However, it becomes deeply ingrained in the

system and is never removed.

• Architectural Lock-in – which occurs when a component is so deeply embedded into the

system that replacing it would be extremely expensive or even unworkable.

• Source Code architectural technical debt – a type of ATD that has its source solely in the

implementation of the solution.

5.5.3. Research procedure

The research method assumed in this paper follows the guidelines for case studies in software

engineering by Runeson et al. [98]. In order to investigate the influence of cognitive biases on

the occurrence of architectural technical debt, we decided to carry out an empirical enquiry based

on a set of semi-structured interviews with software architecting practitioners.

The general outline of the interview process that we developed for the purpose of this study,

and employed during each of the twelve interviews with architects, was as follows:

1. The interviewer asked the participant for their consent to record the interview and to use the

acquired data for research purposes.

2. The researcher obtained statistical data about the participant (age, gender, years of experi-

ence, position, company size/domain).

3. The interviewer introduced the participant to the topic of technical debt and our research.

4. The participant was provided with the definition of each architectural debt item. Then they

were asked if they had ever encountered this type of technical debt and, if so, whether

they could describe their experience with it. This is the part of the interview in which the

participants had the freedom to provide any information that they wanted and believed to be

relevant.

5. The interviewer asked the subject if they had any other experiences with technical debt that

they had not mentioned yet.

78

5. The Influence of Cognitive Biases on Architectural Technical Debt

We did not suggest, either before or during the interviews, that cognitive biases may influence

technical debt. The participants were informed in advance that we were researching reasons for

the occurrence of technical debt, but we could not disclose which reasons we were researching,

in order to avoid influencing their answers. After the interviews, if the participant was interested,

we disclosed information about our research on cognitive biases. In some cases, this resulted in

obtaining additional insights, which were written down for further analysis.

Almost all of the interviews were conducted in Polish, with the exception of No. 7, conducted

in English.

5.5.4. Study participants

Table 5.1. Participant data

No. Age Gender Experience
(years)

Position Company size
(employees)

Company
domain

1 29 M 5 Software Developer over 10 000 Electronics
2 31 M 10 Architect around 2 000 E-commerce
3 54 M 35 Chief Operating Offi-

cer
around 1 500 High tech

4 37 M 13 Executive consultant around 50 Systems integra-
tor

5 39 M 17 Head of Architects around 350 Finance
6 49 M 26 Architect around 350 Finance
7 37 M 16 Consultant over 10 000 Enterprise Soft-

ware
8 45 M 21 Chief of Architects around 250 Systems integra-

tor
9 36 M 15 Founder and Chief

Technology Officer
around 35 Software

10 37 F 15 Architect around 5 000 Telecom
11 40 M 15 Senior Solution Ar-

chitect
over 10 000 Enterprise Soft-

ware
12 37 M 12 Team Leader over 10 000 Electronics

In order to find architects-practitioners, we created an advertisement which we propagated

using our private networks. Most of the participants currently work as architects, though some

also had prior architecting positions and now worked as leaders/managers/company owners. We

also interviewed one software developer, which provided us with a valuable distinct point of

view. The overall data about the participants is summarised in Table 5.1.

79

5. The Influence of Cognitive Biases on Architectural Technical Debt

Table 5.2. Qualitative analysis codes

Code category Code Definition
Cognitive Bias CB: [bias name] Occurrence of one of the cognitive biases

from the list in Section 5.5
Architectural technical
debt occurrence

ATD: [item type] Occurrence of technical debt, which can
be classified into one of the architectural
technical debt items mentioned in Section
5.5. This code was to be used only in
cases when the participant gave a real-life
example of a technical debt occurrence.

Architectural technical
debt occurrence

ATD: Other Unclassified occurrence of architectural
technical debt

Architectural technical
debt occurrence influ-
enced by a cognitive
bias

CB influencing
ATD: [note]

Cases when a cognitive bias directly re-
sulted in the creation of technical debt.
The note should contain details of which
bias influenced what kind of technical debt
items and how.

Cognitive bias influenc-
ing factor

CB antecedent:
[note]

Antecedents of the appearance of cogni-
tive biases. Note should contain a further
description.

Debasing methods Debiasing: [note] Information about interventions that were
suggested or performed by the participants,
which could result in a debasing effect.

5.5.5. Analysis Procedure

Having obtained the raw data from the interviews, we performed the analysis in the following

steps.

1. The recorded interviews were transcribed.

2. We created a coding scheme for analysing the data, using the guidelines of Runeson et al.

[98]. This codes are presented in Table 5.2.

3. Each of the authors encoded the transcripts independently.

4. Using the negotiated agreement [101] approach, we discussed the coding and incrementally

corrected it until we reached unanimity.

5. The following metrics were extracted from the transcripts: the number of cases of cognitive

bias mentioned by the participants, occurrences of architectural debt, cases of cognitive

biases influencing architectural technical debt. Those are presented in Tables 5.3, 5.4 and

5.5 in Section 5.6.

6. The factors influencing cognitive bias as well as the debiasing methods mentioned by

participants were extracted. They are presented in Section 5.6.

80

5. The Influence of Cognitive Biases on Architectural Technical Debt

7. The notes from the interviewer were analysed, in search of any additional data that should

be taken into consideration while drawing the conclusions.

8. The results were discussed and conclusions drawn in a discussion between the authors.

5.6. Results

5.6.1. Architectural debt items influenced by cognitive biases

The participants provided us with accounts about their previous projects, in which various

architectural debt items could often be observed simultaneously. While analysing the interview

transcripts and interviewer notes, we identified 70 specific occurrences of architectural technical

debt items, the exact number of occurrences of each ATD item is shown in Table 5.3.

Table 5.3. Technical debt occurrences mentioned by participants

Architectural technical debt item Appearances
New Context, Old Architecture 17

Source Code ATD 13
The Workaround that stayed 12

Architectural Lock-in 10
Re-inventing the Wheel 8

The Minimum Viable Product that stuck 6
Other (4 different types of ATD) 4

Despite providing the participants with the definitions of architectural technical debt and

the specific architectural debt items, they often mentioned situations that were not cases of

architectural technical debt, or which fit the definition of a different technical debt item. A

common mistake was the false belief that the use of an old technology is synonymous with

technical debt, which does not have to be the case.

The most commonly occurring ATD item was "New Context, Old Architecture". This specific

kind of technical debt appears naturally, by itself, over time, if not enough effort is given to

periodically update, upgrade, change or refactor the architecture. This classical problem has

already been described in one of Lehman’s laws of software evolution [149], which says that

at some point of time, perpetually evolving systems reach a threshold when it is no longer

cost-effective to evolve further without carrying out a major system’s reconstruction. Many of

our participants observed, that this moment often passes unnoticed.

We found several instances of technical debt that did not exactly fit any of the categories of

ATD items specified by Verdecchia et al. [127]. These technical debt items are:

81

5. The Influence of Cognitive Biases on Architectural Technical Debt

• Choosing an obsolete solution that should not be used in the current circumstances at the

start of the project. Participant No 5 explained that in his company, decision-makers only

consider aged solutions as "safe enough" to be used.

• Reusing a component in a setting, in which it does not fit the given problem. Participant No

1 told us how one of his colleagues focused on using readily-made solutions so much, that

it resulted in choosing a solution completely unsuitable for their problem.

• Using a proven architectural solution in a new context, in which it is not suitable. Participant

No 4 explained a situation in which they had to deal with data on the client’s customers,

for which they used a readily-made component that integrated all the aspects of every

customer’s data. The problem appeared when it turned out that not all the customers wanted

to have all of their data connected to a single account, since they may want to create many

accounts for various purposes.

• Transfer of organisational debt onto architectural technical debt. Organisational debt

occurs when key decisions (such as writing down contracts, defining strategies or assigning

responsibilities) are not made in time. This, in turn, may affect key design decisions, which

have to be made with incomplete data about the problem at hand. Participant No. 3 gave us

an example of a situation when a state-owned system had to be deployed before certain key

political decisions were made. This resulted in the need to redo the basic components of the

system.

We did not observe a correlation between the participants’ experience, position or their company’s

domain and the number of ATD items they observed. An interesting case of this came from

participants Nos 5 and 6. Both worked in the same organisation, No 5 had nine years of

experience less than No 6, but participant No 5 gave us nine examples of ATD item occurrences,

while participant No 6 mentioned only two.

5.6.2. Cognitive biases that influence ATD items

By analysing the transcripts and interviewer notes, we found 155 occurrences of cognitive

biases. The exact numbers for each bias are shown in Table 5.4. It was not unusual for many

biases to influence a single ATD item, which often occurs consecutively in a cascade of irrational

decisions, such as:

82

5. The Influence of Cognitive Biases on Architectural Technical Debt

• A decision-maker heard that a specific technology is popular, which led him to believe that

it may be useful in his case (Bandwagon effect)

• He met with a salesman of this specific solution, who only informed him about the beneficial

aspects of the solution, which persuaded him to buy it (Framing effect)

• Despite the disadvantages of this solution, it was used simply because it had already been

paid for (Irrational escalation)

• Which led to an "Architectural Lock-in" because this component was so specific and deeply

embedded in the system that it turned out extremely difficult to replace.

In our analysis we took into account not only the biases of the architects and developers, but also

those that influenced other stakeholders involved in the development and maintenance process –

such as the management and the clients.

Most of the biases mentioned as possibly crucial in the work of Zalewski et al. [26] had a

notable influence on ATD. An exception here is Parkinson’s law of triviality. This specific bias

may impact the time spent on certain tasks, but it does not seem to significantly change the final

outcomes, and so has little magnitude when it comes to causing ATD.

Table 5.4. Cognitive biases present in the participants’ accounts

Cognitive bias Appearances
Anchoring 24

Bandwagon effect 8
Confirmation bias 19

Curse of knowledge 14
IKEA effect 14

Irrational escalation 11
Law of the instrument 10

Optimism bias 20
Parkinson’s Law of triviality 2

Planning fallacy 10
Pro-innovation bias 13
The framing effect 10

5.6.3. Influence of cognitive biases on ATD items

In this Section we discuss in-depth how particular ATD items were impacted by cognitive

biases. Table 5.5 presents the exact number of times that a certain cognitive bias influenced

particular ATD items. The data contained in this table does not add up to the data from Table 5.4

and Table 5.3, because a specific bias occurrence may have influenced a single ATD item more

83

5. The Influence of Cognitive Biases on Architectural Technical Debt

than once, and one ATD item may have been influenced by more than one cognitive bias.

If the influence of a particular bias on a specific ATD item was reported at least three times, we

explored thoroughly the relationship between that bias and the ATD item.

Table 5.5. Cognitive biases influencing ATD items

Cognitive
Bias

New
Context,
Old
Architec-
ture

Source
Code
ATD

The
Work-
around
that
stayed

Architec-
tural
Lock-in

Re-
inventing
the
Wheel

Minimum
Viable
Product
that
stuck

Other

Anchoring 7 5 4 6 4 1 0
Bandwagon ef-
fect

0 1 1 1 1 0 0

Confirmation
bias

2 2 5 4 5 1 1

Curse of
knowledge

2 2 2 4 2 0 0

IKEA effect 3 3 1 2 3 1 0
Irrational esca-
lation

7 1 2 0 1 1 0

Law of the in-
strument

1 3 2 3 0 0 0

Optimism bias 3 3 3 5 2 4 1
Parkinson’s
Law of
triviality

0 1 2 0 0 0 0

Planning
fallacy

3 4 4 3 1 1 1

Pro-innovation
bias

1 1 2 4 4 2 1

The framing
effect

1 2 2 3 1 1 0

1. New Context, Old Architecture

The significant impact of cognitive biases on architectural technical debt can be clearly

observed when researching the causes of this ADT item.

Four participants experienced a situation when a solution was chosen simply because it

was the first possible one that came to notice (anchoring), and even though it was not

cost-effective and did not enable the further evolution of the product, resources were

persistently being wasted on it (irrational escalation).

Participant No. 1 for example, was involved in a project where an open source solution

84

5. The Influence of Cognitive Biases on Architectural Technical Debt

was chosen to create a simple dashboard for the end user. Unfortunately, as the solution

evolved and expanded, the source code of this component had to be forked. Ultimately, the

participant’s team introduced an enormous amount of changes and became the maintainer

of this newly created solution. This increased the team’s workload with the maintenance

efforts.

Too often, a component was used after the support for it had expired, which either left the

component without maintenance or forced the client to take the path of expensive, dedicated

individual support. Participant No. 11 told us about a few cases of systems made for the

public sector, when his clients needed this kind of individual maintenance. This could have

been prevented by properly preparing for the time when this problem was bound to occur,

but often no such precautions are taken, and decisions are made without long-term planning.

In general, it seems that the decision to start from scratch with completely new architecture

is made reluctantly. This hesitancy can be motivated by many cognitive biases: the IKEA

effect when the old solution was made by the decision-maker’s organisation (participant

No. 9 called a product his "precious business baby"), or the optimism bias which may make

the decision-makers believe that no harm may come to them (for example, when using a

system that is not maintained properly).

2. Source Code ATD Source code ATD is most often influenced by anchoring. When solving

a problem, the very basic, satisficing approach is widely present. Citing participant No. 11 –

"If something stupid works, then it is not stupid." This is especially apparent in organisations

in which decisions on how to implement certain components are left entirely to individual

developers whose ideas are never challenged. This was the case in an example provided by

participant No. 2, who had the displeasure of "inheriting" a completely unscalable solution,

used as a basis for a key e-commerce platform developed by his company.

This problem of satisficing decision-making is strengthened by other cognitive biases as

well. The IKEA effect makes developers choose (or even copy) from their own previous

work, the law of instrument makes them use only tools that they are familiar with. The

confirmation bias makes them blind to information that their decisions may be wrong, an

effect that is often enhanced by the optimism bias.

Participant No. 12 encountered a combination of all of this biases in the form of an

enormous Bash based solution, used to deploy changes to the production environment.

The author of the solution was comfortable with Bash, and did not consult (nor was he

85

5. The Influence of Cognitive Biases on Architectural Technical Debt

challenged) his solution’s design with anyone. He did not take into account that anyone

else may ever need to read, understand or change his code. This resulted in the creation of

an enormous set of Bash scripts that were extremely hard to comprehend to anyone besides

its author.

All these problems become even more relevant when not enough time is given for thorough

consideration, which is an intermediate effect of the planning fallacy – when the planned

time for tasks was too short.

3. The Workaround that stayed

A substantial number of workarounds generally come from two beliefs. Namely, that there

is no choice, and that fast fixes are a normal and proper way of problem solving. Individuals

that firmly believe in either of them often do not put any additional effort into considering

the, often lacking, rationale behind their "fixes" (confirmation bias).

Having come up with an idea for a simple workaround, they are satisfied that the problem

will be promptly resolved, and do not search for any alternatives (anchoring).

Participant No. 3 gave us an interesting example, of an organisation that routinely used

a complicated set of workarounds while processing accounting data. Only when a new

integrated accounting system was introduced, the organisation did realise that they have

been producing faulty financial reports for the last 5 years. This kind of a mindset is further

strengthened when they are not given enough time, because the the need for such such tasks

has not been foreseen (planning fallacy).

However the workaround does solve the immediate problem, so there is no urgent need

to change the state of things. This approach, heavily tainted by the optimism bias, was

displayed by Participant No. 9 with the words "we will hopefully come back to it one of

these days."

4. Architectural Lock-in

The most common pattern behind the occurrence of the Architectural lock-in ATD item was

a combination of anchoring and optimism bias. Firstly, due to anchoring, the first satisficing

architectural solution was chosen. Then, even though they did not have any experience with

the solution, development teams simply took a leap of faith (optimism bias) and used the

solution without further consideration of whether it may be difficult to replace later.

This would not have become such a serious problem if individuals did not have a tendency

to choose risky innovative solutions (pro-innovation bias), or if they took time to consider

86

5. The Influence of Cognitive Biases on Architectural Technical Debt

the disadvantages of their architectural concepts (confirmation bias).

Participant No. 12 provided us with the following example that illustrates this problem.

The maintenance team in his organisation needed a ticketing system. They found an simple

open source solution on GitHub that looked satisfactory and choose it, blindly believing that

it would be the proper one. They did not take into account that the component may require

changes in the future and that it was PHP-based (no one in that team had prior experience

in PHP). When they needed to expand the solution, they found themselves "locked-in" this

particular component, while not having the skills necessary for its further development.

Additionally, we noticed that decision-makers often relied on data from salesmen, which

is of course always prepared in a way that shows the offered solutions in a positive light

(framing effect). Participant No. 3 particularly stressed how "salesmen should never be

trusted". Even if decision-makers attempted to obtain information from experts within their

own organisation – the experts had a tendency to omit key information during meetings,

because of the false belief that such knowledge is obvious (curse of knowledge).

5. Re-inventing the Wheel

The Re-inventing the wheel ATD item was mainly observed by our participants in the

context of younger, inexperienced team members, as well as in small companies, especially

start-ups. Lacking prior experience, and with the possibility to start something new from

scratch, ambitious young people often fall into the temptation of creating a solution they

would have full control over (thus, anchoring on that single aspect), something they could

call "their own" (IKEA effect). They want to be pioneers (pro-innovation bias), despite

often not possessing and not searching for already existing knowledge. This frequently

results in re-inventing the metaphorical wheel.

Participant No. 7 told us about a case when he worked in a small company, with a colleague

that he described as an "IT geek". This coworker developed a web application framework

on his own. He frequently applied it when creating products for the company. After he

changed job, this undocumented framework was left without its core maintainer.

The unwillingness to face the reality that someone may have already had the same idea and

properly put it into effect, and thus the inability to find and use ready-made components, is

a symptom of the dangerous influence of the confirmation bias.

6. The Minimum Viable Product that stuck

We found that the MVP that stuck ATD item was the least likely to appear from the list

87

5. The Influence of Cognitive Biases on Architectural Technical Debt

defined by Verdecchia et al. [127]. In our participants’ accounts, MVPs rarely "got stuck",

which means that our observations for this type of ATD were limited. In the case of most

MVPs mentioned by our participants, these solutions were either abandoned as prototypes

when a superior solution was found/developed, or these MVPs were expanded and matured

over time.

For an MVP remaining as it is over an extended period of time, someone had to make a

mistake while estimating a very short lifespan for the product (optimism bias). Participant

No. 5 told us that this usually happened when small programs were written in a hurry to

perform simple tasks like processing/converting text files or uploading/downloading them.

5.6.4. Cognitive bias antecedents (RQ4)

Having identified the biases that influenced the generation of technical debt, we made an

in-depth analysis of the participants’ accounts in search of information on why these cognitive

biases occurred. Cognitive biases, as a phenomenon inherent to the human mind, cannot be

completely avoided. However, certain factors can amplify the influence of cognitive biases on

architecting activities and their outcomes. These factors, namely, the antecedents of cognitive

biases, can be divided into seven groups:

1. Individual’s emotional state

We found that certain feelings often precede the appearance of biases. These are:

a) Fear of: change, responsibility, consequences and of starting from square one (precedes

anchoring, confirmation bias, irrational escalation);

b) Shame, especially of one’s past mistakes (precedesanchoring, irrational escalation);

c) Feeling a lack of agency (makes individuals less likely to challenge the ideas of others

and provide a debiasing effect);

d) Haste (makes individuals more susceptible toall biases, especially the planning fallacy);

Fear and shame have a notably destructive effect. One of our participants attempted to

register information about the technical debt in their organisation. This turned out to be

difficult because employees, even managers, were unwilling to share information about the

technical debt they were responsible for. They were afraid of consequences and ashamed of

their previous mistakes, which then hindered the process of actively managing technical

debt. Individuals experiencing great fears are unlikely to change their behaviour, which

makes them even more susceptible to biases such as anchoring, confirmation bias and

88

5. The Influence of Cognitive Biases on Architectural Technical Debt

irrational escalation.

Feeling a lack of agency is especially relevant in large organisations, in which individuals

often feel that they have no influence on any decisions that are being made. Because of that,

they simply remain indifferent, do not challenge others’ decisions, and end up mindlessly

following orders.

2. Individual’s personality traits

There were two kinds of personality types that were overly prone to cognitive biases. The

extremely ambitious and confident individuals and their opposite – the reserved ones that

lacked assertiveness. The overconfident architects tended to make fast decisions without

deeper consideration (this makes all cognitive biases more likely to appear), while the

taciturn team members tended to follow them blindly. In this way, the possibility of

exerting a debiasing effect on their colleagues is lost. It also makes them more prone to the

bandwagon effect.

3. Individual’s mistakes

We observed some common mistakes that foreshadowed the appearance of cognitive biases.

Those included:

• The basic lack of knowledge or experience required to make decisions in a certain area

(if sufficient knowledge is not obtained, any cognitive biases are more likely to occur).

• Not performing any search for alternative solutions (anchoring, confirmation bias,

IKEA effect, law of the instrument, pro-innovation bias).

• Considering only a limited part of a complex problem, while ignoring the global

impact of the solution (anchoring, confirmation bias, curse of knowledge, optimism

bias, planning fallacy).

• Limiting the planning only to the short term (planning fallacy, optimism bias).

• Habits (confirmation bias, anchoring, irrational escalation, IKEA effect, law of instru-

ment).

• The optimistic belief that mistakes are only made by others (makes all biases more

likely to appear).

An interesting detail is that even seemingly good habits, such as using proven architectural

patterns, may turn out to be harmful. In the case of this particular habit, sometimes a design

pattern may end up being used in unsuitable circumstances.

4. Organisational antecedents

89

5. The Influence of Cognitive Biases on Architectural Technical Debt

The overall environment in which the project is being developed and maintained has a

crucial impact. We observed several factors that impacted the frequency of bias appearance:

• Organisational culture: too lax (which strengthens all biases in individual employees)

or too harsh (which impacts the biases of management and leaders).

• Frequent changes of management staff that impedes long-term planning (influences

all biases)

• Lack of standards and procedures (all biases).

• Unclear separation of duties, especially when it is not clear who is responsible for

which decisions (this means that nobody provides a debiasing effect when decisions

are made in this area).

• Short-sighted cost/profit optimisation as a default approach – investing only in areas

that give immediate profit (irrational escalation, optimism bias, anchoring).

• Lack of motivation for optimising the developed solutions – especially in the case of

short-term cooperation with clients (optimism bias).

• Faulty use of agile development practices – empowered by the belief that any problems

can be fixed in further iterations (influences all biases, since decisions are made in

each iteration by all the parties involved in the project)

A valuable observation that we made was that, in most of the interviews, cognitive biases

appeared as a consequence of an organisational culture that was either too lax or too harsh.

When the culture in the organisation was too casual, which is often the case in startups

(participant No 9 provided us with such insights), individuals are often left to make key

decisions alone. If these decisions are influenced by cognitive biases, no one challenges them

and thus various faulty decisions are made – mainly by young, overambitious team members.

This may lead to many biased decisions like choosing trendy solutions (bandwagon effect) or

using only tools that the decision-maker is familiar and comfortable with (law of instrument).

On the other hand, if the organisation’s culture is authoritarian, giving little voice to the

employees in lower positions in the hierarchy, then possible biases of the higher-ups are

never challenged or corrected. In such cases, decision-makers are more susceptible to the

enticements of salesmen (framing effect), or do not have information that would allow them

to plan the time-frames for projects properly (planning fallacy).

5. Communicational antecedents

Many biases emerge as an after-effect of communication problems. This most commonly

90

5. The Influence of Cognitive Biases on Architectural Technical Debt

happens when specialists from different domains interact, although even close co-workers

are not free from this problem. These problems are often fuelled by the curse of knowledge,

which makes individuals more likely to omit crucial information that could be obtained

from others.

Constructive criticism and challenging the ideas underlying the decisions of others is not

standard in every team. It often means that crucial decisions are never discussed openly.

This means that valuable debiasing opportunities are lost, which in turn makes biased

decisions more likely to occur. Additionally, sometimes decisions made during the initial

negotiation phase of a project are made without consulting technical specialists, which leads

to overly strict deadlines and sometimes absurd contractual arrangements. Participant No

11 told us that, in the case of projects made for the state, they commonly found that the

price and time-frame for the project were made absurdly low and short during negotiations,

simply in order to gain the customer, in hope that profit could be increased later and fixes

could be made during the maintenance phase.

6. Knowledge vaporisation

For any decision to be rational, it is essential for the decision-makers to have proper

knowledge about the issue at hand. However, it is a well-known issue in the area of

architectural knowledge management that knowledge is not always documented and tends

to vanish with the employees that leave the company. This makes decision-makers more

prone to the effect of all cognitive biases, since they are frequently forced to make decisions

based solely on their instincts.

7. External

Some antecedents to cognitive biases are completely beyond our control. The most prevalent

is the current popularity of certain solutions – the deciding factor behind the bandwagon

effect.

Although, often forgotten, an important source of possible problems also lies in politics and

the current legal status. A proper interpretation and understanding of the law is not an easy

task and often leads to dangerous misconceptions. One of our participants provided us with

an account in which they had to create a system before a particular law came into force. This

law had been incorrectly understood by the developers (the curse of knowledge influenced

their communication with legal specialists), which resulted in the need to perform a set of

quick fixes and workarounds shortly after the system became available.

91

5. The Influence of Cognitive Biases on Architectural Technical Debt

Frequent changes in the law, influenced by politics, may also force numerous technically

challenging modifications to existing systems. Every such decision is susceptible to the

influence of cognitive biases – in this case, the politicians’ biases.

5.6.5. Possible debiasing methods (RQ5)

During the interviews, our participants spontaneously gave us hints, how to avoid arising

certain ATD items. Additionally, the participants that scarcely encounter specific ATD items,

usually mentioned why they believe that this item does not occur often in their environment.

All this combined together, in many cases, can be interpreted as a set of possible debiasing

techniques.

We gathered this into a set of bias prevention treatments:

1. Ensuring double-checking and challenging all decisions and their underlying ideas. Trying

to find downsides of any idea as standard – this will make the critique feel less personal and

is therefore more effective.

2. Developing an environment based on trust, in which employees can voice their opinions

and admit to their mistakes – knowing that they will receive help, not scorn. The modern

approaches to agile / servant leadership address this issue.

3. Explicitly gathering information about alternatives before making decisions. Presenting

them to others and asking for their evaluation. This is reminiscent of some components of

architecture evaluation methods.

4. Creating procedures and standards to limit low-quality reckless alterations of the solution

and enable periodical refactoring/changes of the system to fit the ever-changing business

context in which it is used.

5. Creating documentation and passing on knowledge. At a bare minimum, this does not

require much resources, it might involve recording meetings in which information is shared

and decisions are made.

6. Explicitly registering all accounts of TD in the organisation and making plans for a time

when it will be dealt with.

7. Periodically checking whether any new TD has occurred and whether any old TD needs to

be paid – maybe support expired, or all the people with the relevant knowledge have moved

on and are no longer present.

8. Clearly defining and recording who is responsible for which part of the project’s scope. This

92

5. The Influence of Cognitive Biases on Architectural Technical Debt

will make the process of obtaining information and looking for help more straightforward.

It will also minimise the problem of the individuals in charge avoiding responsibility.

5.7. Discussion

As the presented results have no direct equivalents (the possible influence of biases on

technical debt has been merely mentioned [128],[127], [20]), it is necessary to relate these results

to broader research on technical debt, cognitive biases in SE, antecedents and management

techniques for technical debt.

Firstly, we partially confirmed the findings of Zalewski et al. [26], since almost all the biases

(with the exception of Parkinson’s law of triviality) that they recognised as notable for architecture

decision-making, were found to have had a significant influence on ATD. Furthermore, the

biases that we have identified as most commonly influencing ATD (anchoring, optimism and

confirmation bias) have already been identified as having a significant influence on software

engineering activities [14].

In the field of architectural decision-making, it has already been noticed that cognitive

biases distort the decision-making process [23] by strengthening the effects of pre-existing

problems/mistakes. As such, the antecedents for cognitive biases are bound to be, at least

partially, similar to previously discovered causes of ATD. The problems of time pressure,

lack of documentation, unsuitable architectural decisions and human factors, as specified by

Verdecchia et al. [127], are similar to many of the antecedents that we identified. The issue of

miscommunication between specialists of different domains, and its influence on technical debt,

has also previously been addressed [150].

The debiasing methods that we propose only affect debt created inadvertently, since debt

deliberately taken on is usually a result of a rational management strategy [151]. The debiasing

methods that we proposed give an interesting new perspective to the problem of managing

architectural technical debt – they can be taken as a set of instructions on how to manage an

organisation that would be less susceptible to ATD. ATD management so far, as indicated by

Besker et al. [28], suffers from a lack of proper management guidelines. A set of strategies has

only recently been proposed [127], [152].

93

5. The Influence of Cognitive Biases on Architectural Technical Debt

5.8. Threats to Validity

As with every study, certain issues might pose a threat to the validity of our findings. Having

this in mind, we attempted to minimise the effects of such threats. Since the research is qualitative,

and our goal was to conduct an exploratory in-depth analysis, we only took into account the

experiences of our 12 participants. To prevent this from being a problem, we attempted to make

this group as varied as possible – we interviewed people that held different positions, had varying

levels of experience (from 5 to 35 years), worked in companies of different sizes (from start-ups

to large corporations), and whose organisations had diverse domains.

Still, in order to further confirm the validity of this research, it would be useful to expand it

with more participants, and possibly using a different research methodology (like the think aloud

protocol method [153]).

Since our participants were not experts in the field of technical debt, they often presented

examples of cases that were not actually occurrences of technical debt. Furthermore, even if

their example was indeed a case of technical debt, they confused various ATD items withe each

other. To ensure that such mistakes did not have an undue influence on our results, we searched

for the ATD items (coded them from the transcriptions) without taking into account the ATD

item category that the participant believed their example belonged to.

Since it may be possible for a single researcher to make a mistake during the coding – for

example, to observe a cognitive bias that did not actually occur – the interview transcriptions

were analysed and coded by us separately, and then the findings were confronted using the

negotiated agreement approach [101]

To prevent our participants from forcibly searching for cognitive biases in their experience,

we only asked them to explain the rationale behind the decisions made in their projects. They

were informed about our cognitive bias related research only after the interviews.

Finally, cognitive biases often overlap and interact with each other. Which means that their

influence on ATD items may not always be straightforward. We did not analyse the dynamics of

bias’ interaction in this paper.

5.9. Conclusion and Research outlook

Our research achieved the following:

• We assessed that cognitive biases definitely have a significant influence on the creation of

architectural technical debt (RQ1).

94

5. The Influence of Cognitive Biases on Architectural Technical Debt

• We determined that most significant biases that impact architectural technical debt are

anchoring, optimism and confirmation bias. Nevertheless, the influences of the curse of

knowledge, the IKEA Effect, irrational escalation, pro-innovation bias, planning fallacy, the

framing effect and the bandwagon effect are also noticeable.

• We assessed that cognitive biases affect all of the ATD items indicated by Verdecchia et al.

[127]; nevertheless, the most frequently affected item turned out to be "New Context, Old

Architecture" (RQ3) and the least influenced one appeared to be "the MVP that stuck".

• The most common antecedents of cognitive biases that influence ATD have been identified

(RQ4).

• A number of debiasing techniques have been proposed (RQ5).

Our research revealed also that the organisation’s culture is often an important factor that

influences the creation of technical debt, since most of the antecedents and the discovered

debiasing methods are connected with how the organisation is managed, and the frame of mind

of the organisation’s members.

In order to minimise the amount of unwanted architectural technical debt, organisations

should remove the fear of admitting software deficiencies and introduce trust into the company’s

culture. As noticed by Besker et al. [152], the penalising approach to managing architectural

technical debt is the least effective one.

An atmosphere of thrust and camaraderie would enable individuals to provide a debiasing

effect to each other. The ideal environment would be one in which challenging the ideas of others

is commonplace, in the form of sensible, non-judgemental critique. If meaningful critique of

each other’s ideas becomes commonplace, employees are less likely to feel threatened by it and

to actually start making use of each other’s suggestions.

In an organisation founded on trust, there should be space to admitting one’s mistakes. When

a problem is detected, everyone should focus on solving it together, instead of looking for

scapegoats.

Further research could include:

• further confirming our findings with proper quantitative data;

• how team / organisational culture influences the emergence of inadvertent technical debt;

• in-depth research on particular antecedents’ and biases’ influence on ATD;

95

6. Is knowledge the key? An experiment on debiasing

architectural decision-making - a pilot study

Article title Is knowledge the key? an experiment on debiasing
architectural decision-making-a Pilot study.

Authors Klara Borowa, Robert Dwornik, and Andrzej
Zalewski

Publishing
venue

Product-Focused Software Process Improvement: 22nd
International Conference,

Year 2021
MNiSW
points

70

Contribution Original research idea, research method design, half of
the data analysis (coding), most of the paper writing.

96

6. Is knowledge the key? An experiment on debiasing architectural decision-making - a pilot
study

6.1. Preface

As shown in Chapters 4 and 5, cognitive biases can negatively impact software architects’

decisions in various ways. One such effect is making architects unnecessarily incur dangerous

architectural debt. Chapter 5 results have an additional important finding: that the main cognitive

biases impacting architects are optimism bias, anchoring, and confirmation bias.

The natural progression of this research was to attempt to alleviate the impact of cognitive

biases on architectural decision-making. In this pilot study, we performed a simple B level [78]

debiasing intervention. We recorded 2 groups of students who were designing and implementing a

system as part of their university curriculum. One of the groups took part in a simple presentation

where they were informed about cognitive biases and how they may impact their project’s

architecture.

We recorded two separate project meetings for both groups and compared the arguments they

used during their group discussions. In this case, the intervention turned out to be ineffective -

the group that took part in the workshop used more biased arguments during their conversations

than the non-debiased students.

However, this study had a major merit. We analyzed the conversations to find how exactly each

bias impacted the team. The three researched biases (anchoring, optimism bias, and confirmation

bias) were found to interact with each other – an effect which, in this thesis, is called the "wicked

triad."

In accordance with these findings, proposed a set of debiasing techniques. These were:

• Listing drawbacks by the person proposing a solution: since usually, the first mention of a

solution resulted in anchoring on its benefits.

• Listing risks: since optimism bias and confirmation bias mainly impacted the overall

atmosphere (not the architectural arguments) of the meeting, making team members unlikely

to consider any risks.

• Assigning somebody to monitor the meeting for the "We already decided on that, why

discuss this more?" argument: This argument was usually a sign that confirmation bias was

stopping the participants from discussing solution alternatives.

The development of the above debiasing techniques would not have been possible without

this pilot study. Chapter 7 presents their experimental validation.

97

6. Is knowledge the key? An experiment on debiasing architectural decision-making - a pilot
study

6.2. Abstract

The impact of cognitive biases on architectural decision-making has been proven by previous

research. In this work, we endeavour to create a debiasing treatment that would minimise the

impact of cognitive biases on architectural decision-making. We conducted a pilot study on

two groups of students, to investigate whether a simple debiasing presentation reporting on the

influences of cognitive biases, can provide a debiasing effect. The preliminary results show

that this kind of treatment is ineffective. Through analysing our results, we propose a set of

modifications that could result in a better effect.

6.3. Introduction

The occurrence of cognitive biases is inherent to the human mind, and as such, can influence

all individuals taking part in the software development process [14]: developers [20], architects

[22], designers [15], testers [154].

In particular, cognitive biases have been proven to distort architectural decision-making [77]

by influencing software architects’ reasoning [22]. This influence can be particularly strong,

since every systems architecture is actually a set of design decisions [155] made by individuals.

Thorough education about cognitive biases turned out to significantly improve software effort

estimation [29], which is severely afflicted by cognitive biases [16]. Similarly, in this work

we examine, (RQ) whether educating software architects about cognitive biases can provide a

beneficial debiasing effect, which increases the rationality of decision-making.

In order to answer this question, we designed an experiment and ran a pilot study on two

groups of students. The preliminary findings show that educating engineers about the possible

impact of cognitive biases is not sufficient to mitigate the influence of cognitive biases on design

decisions.

Therefore, more advanced debiasing techniques are needed. We analysed how exactly

cognitive biases influenced various elements of the conversation (arguments, counterarguments,

and general conversation). Based on that, we proposed additional debiasing techniques that can

be used in order to create a more effective debiasing treatment. We plan to perform a modified

version of this experiment, on a larger sample, in the near future. Our long time objective is to

develop effective, debiasing techniques for architectural decision-making.

98

6. Is knowledge the key? An experiment on debiasing architectural decision-making - a pilot
study

6.4. Related Work

The concept of cognitive biases was introduced by Tversky and Kahneman in their work about

Representativeness, Availability and Anchoring biases [33]. Cognitive biases are a by-product

of the dual nature of the human mind – intuitive (known as System 1) and rational (known as

System 2) [11]. When the logic-based reasoning of System 2 is not applied to the initial decisions

of System 1, we can say that the decision was biased.

Software architecture, defined as set of design decisions [155], is influenced by various human

factors [75]. One of these factors are cognitive biases [77]. Their influence on architectural

decision-making has been shown as significant in recent research [22] [77] [23] [26]. When no

debiasing interventions are applied, the consequences of such biased decisions can be severe –

for example resulting in taking on harmful Architectural Technical Debt [156].

In the domain of architecture decision-making, various debiasing techniques were proposed

[77], [156]. The use of techniques that prompt designers to reflect on their decisions, have turned

out to be effective in improving the quality of the reasoning behind design decisions [157].

Debiasing, by educating software developers about the existence of cognitive biases and their

influences, has recently been proven to work as a powerful tool in the realm of software effort

estimation [29]. The effectiveness of this approach to debiasing architectural decision making,

has not yet been empirically tested.

6.5. Study Design

6.5.1. Bias selection

Based on the cognitive biases researched previously in relation to software development [14],

as well as biases shown previously as influencing software architecture [26], [156], [77], we

selected three cognitive biases as the subject of the experiment:

1. Anchoring – when an individual over-relies on a particular solution, estimate, information

or item, usually, the first one that they discovered or came up with [33].

2. Optimism bias – when baseless, overly positive estimates, assumptions and attributions are

made [45].

3. Confirmation bias – the tendency to avoid the search for information that may contradict

one’s beliefs [158].

99

6. Is knowledge the key? An experiment on debiasing architectural decision-making - a pilot
study

6.5.2. Data acquisition

In order to obtain the data for our study, we took part in four meetings with two groups of

students that were working on a group project during their coursework. The meetings were

conducted online through the MS Teams platform. Both groups were supposed to plan, design

and implement a system as a part of their course. The topic for the project was at their discretion,

with the only hard requirement being the use of Kubernetes in their solution.

In the case of one of the groups, we prepared a presentation during which we explained the

concept of cognitive biases, and how they can influence architectural decision-making. We

explicitly explained the three researched cognitive biases and gave examples of their possible

influence on the students’ project. We did not mention anything about cognitive biases or

debiasing to the second group.

The meetings proceeded as follows:

1. We asked the participants for their consent to record the meeting and to use their data for

the purpose of our research.

2. In the case of the debiased group (Team 2), we showed them our presentation about cognitive

biases in architectural decision-making. We did not perform this action with the other group

(Team 1).

3. The meeting continued naturally, without our participation, although a researcher was

present and made notes when necessary.

We also asked the participants to fill in a small survey to obtain basic statistical data about

them.

6.5.3. Data Analysis

The recordings from the meetings were transcribed. In order to identify the cognitive biases,

and their influence on decision-making, we defined a coding scheme presented in Table 6.1. The

codes were applied to indicate the occurrence of the researched biases, as well as the arguments

for and against the discussed architectural decisions.

The first and second author coded the transcripts independently. Then, they used the negotiated

coding [101] method to discuss and correct the coding until they reached a full consensus.

Subsequently, we counted the number of occurrences of each code, and analysed the fragments

of the meetings that were found to have been influenced by cognitive biases.

100

6. Is knowledge the key? An experiment on debiasing architectural decision-making - a pilot
study

Code category Code Definition
Bias – Anchoring KOT Putting too much emphasis on the first piece of

information or idea that was heard/proposed/in-
vented.

Bias – Optimism OPT Naive faith that the unpleasant consequences of
our decisions will not happen. Typical state-
ments include: “It will somehow be.”, “No need
to think about possible problems.”, “Let’s just
start coding, it will be fine.”

Bias – Confirmation POT Not accepting and not seeking information that
is inconsistent with our current beliefs.

Arguments for the deci-
sion

ARG An argument that was in favour of choosing a
particular solution.

Arguments against the
decision

PARG A counterargument, against choosing a particu-
lar solution.

Table 6.1. Coding Scheme

6.5.4. Participants

We recorded four meetings with two different groups of students that were working on their

Master’s degrees in Computer Science at Warsaw University of Technology. The students

grouped themselves into teams depending on their own preferences and had to choose a team

leader. The teams consisted of five members each. Most of the students (with a single exception)

had prior professional experience in software development. More detailed information on the

students is presented in Table 6.2.

Age Gender Has professional
experience?

Job position Experience [years] Team No

23 M Yes Data Engineer 1 1 (not debiased)
24 M Yes Software Developer 2.5 1 (not debiased)
23 M Yes Software Developer - intern 0.1 1 (not debiased)
24 M Yes Cloud/DevOps 3 1 (not debiased)
23 M Yes Systems Engineer 2 1 (not debiased)
24 M Yes Java Developer 1.5 2 (debiased)
24 M Yes Full Stack Developer 2 2 (debiased)
24 M Yes Java Developer 2 2 (debiased)
23 F Yes Sales Analyst 1 2 (debiased)
25 M No No professional experience 0 2 (debiased)

Table 6.2. Participant data

6.6. Results

Using the coding scheme presented in Table 6.1, we obtained the following information:

101

6. Is knowledge the key? An experiment on debiasing architectural decision-making - a pilot
study

• The percentage of biased arguments in statements for or against certain architectural

decisions (see Figure 6.1).

• How many arguments for and against certain architectural decisions were made during the

meeting (see Figure 6.2).

• How many of these arguments and counterarguments, were influenced by cognitive biases

(see Figure 6.3)

• How many cognitive biases were present in statements not related to architectural decisions

(see Figure 6.3).

Figure 6.1, which presents the percentage of biased arguments used during the meetings,

shows that Team 1 (non-debiased) used more rational arguments than Team 2 (debiased). This

means that the debiasing treatment – simply informing the participants about the existence of

cognitive biases – was ineffective.

Figure 6.2 shows that there was a significant difference between the amount of arguments and

counterarguments in the discussions. Teams were less likely to discuss the drawbacks of their

decisions than their positive aspects.

Figure 6.1. Biased arguments

Figure 6.2. Argument count

102

6. Is knowledge the key? An experiment on debiasing architectural decision-making - a pilot
study

Figure 6.3 illustrates the number of biased statements, as well as the ratio between the

researched biases depending on statement type.

Figure 6.3. Biases in statements

In the case of both teams, most cognitive biases were present in statements not related to

architectural decision-making. In this type of discussion, confirmation bias and optimism bias

were the most prevalent. This was usually due to the teams’ need to reassure themselves that

their course of action was correct.

In both teams, most of the biased arguments were influenced by the anchoring bias. This

means that both teams considered an array of solutions that came to their minds first, without

any additional argumentation on why the specific solution is correct. When it comes to coun-

terarguments, against specific architectural solutions, confirmation bias was prevalent in both

teams. This was usually due to the teams’ unwillingness to change a previously made decision.

6.7. Threats to validity

In this work, we describe a pilot study. Its main weakness is the small number of participants

that took part in the experiment. This means that all of our findings are preliminary and cannot

be perceived as final. We plan to perform a modified version of this experiment with a larger

number of teams, to obtain more data to verify our findings.

6.8. Discussion

The team that was not debiased by our presentation used a significantly lower number of

biased arguments. This implies that a simple debiasing treatment, by simply reporting on

the biases is not strong enough to counter the influence of cognitive biases on architectural

decision-making.

103

6. Is knowledge the key? An experiment on debiasing architectural decision-making - a pilot
study

We discovered the typical scenario of bias-influenced architectural decision making. First,

one team member proposes an idea that first came to their mind (an idea prompted by System

1). If the solution does not disturb the current project, other team members are unlikely to give

any counterarguments (only around half of the arguments used were counterarguments) as they

are already anchored on the initial proposition. If the solution requires changes to previously

made decisions, other team members (due to confirmation bias), are likely to give biased

counterarguments to avoid changes. Additionally, the whole atmosphere of the conversation

is heavily influenced by the confirmation bias and optimism bias, making the team unlikely to

notice any errors in their decision-making.

With these findings in mind, we propose (Section 6.9) a set of modifications to our debiasing

approach.

6.9. Research outlook

Since the pilot study showed that a simple debiasing treatment does not help to overcome the

biases, we plan to extend and repeat this experiment with the following modifications:

• Since the most biased arguments in favour of a solution were influenced by anchoring, and

participants were overall less likely to use counterarguments – we propose that the person

presenting a solution, should also present at least one drawback.

• Since most biased counterarguments were influenced by confirmation bias, due to the teams’

reluctance to change a previously made decision – we propose that one of the team members

should monitor the discussion and point out the occurrence of such a biased argumentation.

• Since optimism bias and confirmation bias influenced the overall atmosphere of the meetings

– we propose that, at the end of the meeting, after making the initial decisions, teams should

explicitly list their drawbacks. Then, if the need arises, decisions should be changed

accordingly.

• We will add an additional code to the coding scheme - “decision”. Which will mean

the decision that was ultimately made during the meeting. This will enable us to count

how many rational and biased arguments were made in favour of the decisions that were

eventually chosen.

• Instead of a simple debiasing presentation, we will hold a longer debiasing workshop.

During this workshop, we will do more than simply inform the participants about the

104

6. Is knowledge the key? An experiment on debiasing architectural decision-making - a pilot
study

influence of cognitive biases on architectural decision-making. The participants will also be

taught, through a series of practical exercises, how to apply our debiasing techniques.

• The next experiment will be performed on a significantly bigger sample of participants.

6.10. Conclusion

The preliminary results (see Section 6.6) show that a simple presentation about cognitive

biases and their possible influence on architectural decision-making is not an effective debiasing

method. At the same time the pilot study revealed crucial information about how biases influenced

the arguments for and against certain decisions. This made it possible to develop a series of

modifications to our debiasing approach (as presented in Section 6.9) in order to reshape the

entire experiment.

105

7. Debiasing architectural decision-making: a

workshop-based training approach

Article title Debiasing architectural decision-making: a
workshop-based training approach.

Authors Klara Borowa, Maria Jarek, Gabriela Mystkowska,
Weronika Paszko, Andrzej Zalewski

Publishing
venue

European Conference on Software Architecture

Year 2022
MNiSW
points

140

Contribution Original research idea, research method design, part of
data gathering, half of the data analysis (coding), most

of the paper writing.

106

7. Debiasing architectural decision-making: a workshop-based training approach

7.1. Preface

The unsuccessful debiasing intervention presented Chapter 6 has triggered the development

of a more sophisticated, level C [78] debiasing intervention. This intervention has the form of

a debiasing workshop during which participants are informed about cognitive biases and their

impact on architectural decision-making. Finally, they take part in three practical exercises

designed to teach them the debiasing techniques proposed in Chapter 6.

In this paper, we performed an empirical validation through a controlled experiment on student

participants in order to evaluate this workshop. Twelve 2-3 person groups of master’s students

that took part in a software architecture course took part in this experiment. The overall plan of

data gathering was:

• Phase 1: Designing an architecture as part of a given task (without debiasing),

• Phase 2: The debiasing workshop,

• Phase 3: Designing an architecture (different from Phase 1) as part of a given task (after

debiasing).

Then, we compared the quality of the argumentation used by student groups before and after

the debiasing workshop.

The experiment turned out to be successful, 10 out of 12 groups reasoning improved (became

more rational) after the workshop. However, this was the case not because the number of biased

arguments and counterarguments decreased - but because the number of non-biased statements

increased. Additionally, contrary to our predictions, we found that the technique of "having a

person monitor the meeting to counter confirmation bias" did not have a major impact.

The success of the debasing treatment presented in this study was a step towards the

ultimate goal: debiasing experienced practitioners. As such, an additional verification on

practitioners was performed and presented in Chapter 8.

107

7. Debiasing architectural decision-making: a workshop-based training approach

7.2. Abstract

Cognitive biases distort the process of rational decision-making, including architectural

decision-making. So far, no method has been empirically proven to reduce the impact of

cognitive biases on architectural decision-making. We conducted an experiment in which 44

master’s degree graduate students took part. Divided into 12 teams, they created two designs

– before and after a debiasing workshop. We recorded this process and analysed how the

participants discussed their decisions. In most cases (10 out of 12 groups), the teams’ reasoning

improved after the workshop. Thus, we show that debiasing architectural decision-making is an

attainable goal and provide a simple debiasing treatment that could easily be used when training

software practitioners.

7.3. Introduction

Cognitive bias is a term that describes an individual’s inability to reason entirely rationally;

as such, it prejudices the quality of numerous decisions [19]. Researchers have observed

the influence of cognitive biases on day-to-day software development over two decades ago

[158]. Since then, it was proven that almost all software development activities are affected by

cognitive biases to some extent [14]. Architectural decision-making in particular is not exempt

from the influence of cognitive biases [22], [19]. However, research on debiasing architectural

decision-making is scarce [14], with a clear lack of empirically proven debiasing methods that

could be used in practice [21]

In this paper, we endeavour to create an effective debiasing treatment, through expanding on

our previous work [159]. The debiasing treatment that we designed consists of an hour-long

workshop during which individuals learn about cognitive biases in architectural decision-making

(ADM) and take part in three practical exercises. We tested the effectiveness of this debiasing

treatment in an experiment, in which 44 master’s level graduate students took part. Our study

was aimed at answering the following research question:

RQ. Is a training workshop an effective method of reducing the impact of cognitive

biases on architectural decision-making?

Through our study, we show that debiasing ADM is an attainable goal, since in most cases (10

groups out of 12) the debiasing treatment was successful. Our workshop provides a debiasing

effect and, because of its simplistic design – it can easily be used to train software practitioners

to make more rational decisions.

108

7. Debiasing architectural decision-making: a workshop-based training approach

This paper is organised as follows. In Section 7.4 we describe research related to the subject of

our study. Section 7.5 presents the research method, and in particular: the design of the debiasing

workshop, our experiment, the study participants and how we analysed the obtained data. Section

7.6 contains the results of our experiment. In Section 7.7 we discuss our findings. The threats

to validity are explained in Section 7.8. Finally, in Section 7.9 we provide a conclusion and

describe possible future work.

7.4. Related work

Cognitive biases impact how decisions are made by every human being. In particular, they

heavily influence intuitive decisions made under uncertainty [160]. This effect occurs due to

the dual nature of the human mind, which comprises intuitive and rational decision-making

subsystems [11]. Fischoff [78] describes four levels of debiasing (reducing the effect of bi-

ases) treatments: (A) warning about the biases, (B) describing typical biases, (C) providing

personalised feedback about the biases, (D) an extended programme of debiasing training.

Cognitive biases influence on architectural decision-making. Tang [22] described how

distorted reasoning may impact software design, by providing a set of examples of biased

statements that software designers may use during their work [22]. As software architecture is

actually a set of design decisions [6], it may be heavily affected by architects’ biases. This makes

reducing the impact of biased decision-making an important endeavour in the area of software

architecture (see also [19], [26]).

Debiasing architectural decision-making. Although there are various guidelines and practices

for improving architectural decision-making [74], [80], there is a severe lack of empirical

research on treatments for undesirable behavioural factors in the realm of ADM [21]. There is a

small amount of research on debiasing in Software Engineering. So far, the existing research

has rarely proposed debiasing approaches, and empirical validation of the proposed debiasing

methods [14] is even less frequent. Notably, Shepperd et al. [29] proposed a successful treatment

that improved software effort estimation, through a two- to three-hour-long workshop about

cognitive biases. Our team attempted an empirical validation of an anti-bias treatment for ADM

[159], but it turned out not to be successful. This may be due to its several weaknesses:

1. We informed the participants about biases through a simple presentation. This treatment

is on the lower levels (A and B) of Fischoff’s debiasing scale [78]. In comparison, the

109

7. Debiasing architectural decision-making: a workshop-based training approach

successful treatment proposed by Shepperd et al. [29] included a workshop and giving

personalised feedback (level C debiasing).

2. In order to evaluate whether the treatment provided the desired effect, we compared the

performance of two groups of students – one that was shown the presentation, and one

that was not. However, this approach does not take into account the teams’ individual

traits. Those traits may make them more or less susceptible to cognitive biases from the

start. It is possible that, when comparing a single team’s performance before and after the

presentation, the results may have been significantly different.

3. The sample (2 groups consisting of 5 students) was rather small.

This paper summarises our subsequent research that was aimed at developing a successful

debiasing treatment by overcoming the above shortcomings.

7.5. Research Method

The three-hour-long experiment was performed during a meeting on the MS Teams platform.

The experiment plan has been made available online [161]. While planning the experiment, we

enhanced most steps from our previous approach [159] to both improve the debiasing treatment

itself and the validity of the experiment. The basic steps of the experiment included:

1. Preparing the debiasing workshop.

2. Gathering participants.

3. A series of three-hour long meetings during which we conducted the experiment, which

consisted of three steps:

a) Task 1 – a 1 hour-long ADM task.

b) The debiasing workshop.

c) Task 2 – a 1 hour-long ADM task.

4. Analysing the teams’ performance during the first and second tasks.

7.5.1. Biases

The debiasing workshop was designed to counter three biases that in previous research turned

out to be exceptionally influential on architectural decisions [19], [162] and their impact on

software engineering overall has already been researched extensively [14] :

1. Anchoring – a biased preference towards initial starting points, ideas, solutions [160].

110

7. Debiasing architectural decision-making: a workshop-based training approach

2. Confirmation bias – when the currently desired conclusion leads the individual to search for

confirming evidence, or omitting other information [26].

3. Optimism bias – an inclination towards overly optimistic predictions and judgements [14].

7.5.2. Architectural decision-making task

Each team of participants performed the task twice: before and after the debiasing workshop.

The theme (the problem that was to be solved) was different in each task. The task was to design

an architecture that could be used as a solution to a given theme, and to record the design using

the C4 model notation [163]. The task itself was known to the participants before they took part

in the experiment, in order to allow them to prepare and learn more about the C4 model. This

was not the case for the themes. All the tasks were supposed to be graded as part of the students’

software architecture course. However, the students were given over a week after the experiment

to finish and polish their design. During both architectural design tasks, the researchers did not

take an active part in the architecting.

7.5.3. Debiasing Workshop Design

The full workshop plan with instruction for workshop organisers have been made available

online [161]. The workshop was designed to teach three debiasing techniques:

• The anti-anchoring technique: having proposed an architectural solution, the individual that

presents it must explicitly list one disadvantage of the solution.

• The anti-confirmation bias technique: one team member has to monitor the discussion for

unjustified statements that dismiss new information and ideas. Such as “We already decided

that”.

• The anti-optimism bias technique: the team must explicitly mention the risks associated

with the design decisions.

These specific techniques were proposed previously as a result of our previous work [159]

where we analysed, in detail, how each of the three researched biases usually impacted the teams

that took part in the study. However, during that study, the effectiveness of these techniques

was not validated. For each of these three techniques, the participants had to actively perform

a practical exercise. In this phase of the experiment, the researchers actively facilitated the

workshop by encouraging participants to use the debiasing techniques, providing them with

examples of the techniques’ use, and prompting the participants when they forgot to use the

technique that they were supposed to apply.

111

7. Debiasing architectural decision-making: a workshop-based training approach

7.5.4. Sample

The participants were recruited from among master’s level graduate students majoring in

Computer Science in our Faculty. These graduate students in particular, were taking a Software

Architecture course. Although participation could be part of their graded project, it was voluntary.

There was an alternative, traditional way, to obtain a grade. At the start of the MS Teams meeting,

participants filled a questionnaire that allowed us to obtain basic data about them. Overall,

61% of the participants had prior experience in software development, ranging from 0.3 to 3

years. The questionnaire and its results, containing detailed information about the participants, is

available online [161].

7.5.5. Analysis

For the analysis, we used a modified approach of our method from our previous study [159].

In order to analyse the results, we transcribed all recordings of the tasks, during which the

participants’ created their design. In order to inspect how biases impacted architectural decisions,

we applied the hypothesis coding method [164]. This means that we defined a set of codes to be

used to mark relevant segments in the transcript in advance, prior to the analysis. The coding

scheme and all specific code counts have been made available online [161].

Each transcript was first coded by two researchers separately. Then, all of the codes were

negotiated [101] until the coders reached a consensus on each code. Additionally, no transcript

was coded by the same researcher that conducted the particular meeting with the participants.

Furthermore, we summarised the overall number of codes only twice, after coding 6 and 12

transcripts, to avoid a situation where we would unconsciously chase after a desired number of

biased or non-biased arguments in a particular transcript.

Having coded the transcripts, we compared how many biased and non-biased statements/de-

cisions were present before and after the workshop. We defined: (a) a biased decision as one

impacted by more biased statements than rational arguments, (b) a non-biased decision as one

impacted by more rational arguments than biased statements, (c) neutral decisions as ones

impacted by an equal amount of biased and non-biased statements. We also counted the amount

of bias influences and the usage of the debiasing techniques during the tasks.

7.6. Results

Through the analysis process we uncovered the specifics about arguments, decisions, bias

occurrences and the use of debiasing techniques in the teams’ Task 1 and Task 2 transcripts. All

112

7. Debiasing architectural decision-making: a workshop-based training approach

p-values mentioned in this section were calculated using the non-parametric Wilcoxon Signed

Rank Test. Through this test, we evaluated whether the changes in specific measured values were

statistically different (when the p-value was less than 0.05). All specific numbers for code counts

for each team are available online [161].

7.6.1. Arguments.

We classified these arguments as either biased (i.e. affected by one or more of the researched

biases) or non-biased. Overall, we found 1470 arguments and 487 counterarguments. 54% of the

statements before the workshop were biased, compared to 36% after. In general, the percentage

of biased arguments decreased after the workshop in the cases of all teams except one.

The increased number of non-biased arguments (p-value = 0.0024) and non-biased counterar-

guments (p-value = 0.0005), and the decrease of the percentage of biased statements (p-value =

0.002) were significant. However, the changes in the number of biased arguments (p-value =

0.1973) and counterarguments (p-value = 0.8052) can not be considered significant.

7.6.2. Decisions.

Overall we found 641 decisions - 266 biased, 281 non-biased and 94 neutral. 52% of decisions

before the workshop were biased, compared to 31% after. Only one had a larger percentage of

biased decisions after the workshop. In the case of all the other teams, the percentage of biased

decisions decreased. The increase in the number of non-biased decisions (p-value = 0.0024) and

the decreased percentage of biased decisions (p-value = 0.0020) were significant. However, the

change in the number of biased decisions (p-value = 0.0732) can not be considered significant.

7.6.3. Cognitive biases.

Overall, we found 1110 bias occurrences - 558 before and 552 after the workshop. The

sum of these counts is different from the number of arguments since: (a) it was possible for

various biases to influence one argument, (b) some biased statements were not connected to any

architectural decision.

There was no significant change in the overall number of biases between Task 1 and Task

2 (p-value = 0.8647). This means that the debiasing effect (the smaller percentage of biased

decisions and arguments) was not achieved by decreasing the number of bias occurrences during

the tasks. In fact, the effectiveness of the debiasing treatment comes from increasing the number

of non-biased arguments.

113

7. Debiasing architectural decision-making: a workshop-based training approach

7.6.4. Debiasing techniques.

We compared the amounts of technique uses before and after the workshop, since it was

possible for participants to spontaneously use a specific technique during Task 1. We identified

133 uses of the proposed techniques - 26 techniques before and 107 after the workshop.

The number of uses of the practices increased significantly during Task 2 (p-value = 0.0005).

However, three teams did not increase their use of the anti-bias techniques substantially after the

workshop. Despite this, these teams’ percentage of biased arguments and decisions decreased

during Task 2. Additionally, two teams, despite using a higher number of debiasing techniques

during Task 2, had more biased decisions and more biased arguments during Task 2.

Overall, the anti-optimism technique was used most often (15 before and 57 after workshop),

while the anti-anchoring technique was used less often (3 before and 30 after workshop), with the

anti-confirmation bias technique rarely being used at all (8 before and 20 after workshop). This

may be because listing risks came most naturally, while the other two techniques may require

much more effort to be used correctly.

7.7. Discussion

Our results show that the debiasing treatment through the debiasing workshop we designed

was successful, both improving the quality of argumentation and design decisions. However,

there are some particularities worth discussing in detail, which may help to significantly improve

our approach in the future.

Firstly, our approach did not significantly decrease the number of cognitive bias occurrences,

biased arguments and biased decisions that impacted our participants (see Section 7.6). Instead,

we managed to improve the number of rational arguments and decisions present in the teams’

discussions, through which the percentage of biased arguments and decisions decreased. This

means that, while it may not be possible to completely get rid of cognitive biases, other ways of

rationalising decision-making are possible and could be pursued.

Secondly, the team whose decisions improved the most was the one that had the worst result

in Task 1. Furthermore, the team that improved the least was the one with the best result in Task

1. This may mean that, while our treatments successfully improve the performance of initially

biased individuals, it may not be as impactful in the case of individuals that were initially less

impacted by biases. Since our participants were students with up to three years of professional

114

7. Debiasing architectural decision-making: a workshop-based training approach

experience, we do not know yet how different the debiasing effect would be on experienced

practitioners (who may be initially less impacted by biases).

Finally, the failure of two teams led us to explore the transcripts in detail. After that, we

noticed that their performance dropped at one point, when the participants simply became tired

(which they expressed verbally). This is in line with Kahneman’s [11] explanation for the

existence of two systems – using System 2 is physically exhausting and no human can use

it indefinitely. Thus, time for rest may be a crucial factor to bear in mind while attempting

debiasing.

7.8. Threats to Validity

Conclusion validity: We used non-parametric tests to examine whether the observed changes

in the measured values were significant.

Internal validity: We put significant care into designing the experiment and setting the

environment so that no factors other than the workshop influenced the students. The teams did

not know the themes for their tasks before the study, and did not have more than 10 minutes of

time to interact with the environment outside during the experiment. Finally, to decrease the

chances of the researchers distorting the results during the analysis, we used negotiated coding

[101] and calculated the results (code counts) for the transcripts only twice.

Construct validity: Our method also improves on the one used in our previous study [159]

by taking into account not only arguments and biases but also decisions. This factor is crucial

since it is possible that, while the overall argumentation may improve, a team can lack regularity

when using rational arguments, thus still making numerous biased decisions nonetheless.

External validity: Our study’s weakness is that our participants were all students. While

most of them had professional experience, it was limited.

7.9. Conclusion and Future Work

In this paper we explored whether debiasing through a training workshop is an effective

method of reducing the impact of cognitive biases on ADM (RQ). We designed such a workshop

and examined its effectiveness (Section 7.5). The results show that the debiasing treatment

is effective (Section 7.6), although it does not completely eliminate the impact of the biases

(Section 7.7).

115

7. Debiasing architectural decision-making: a workshop-based training approach

Through this work, we show that designing a successful debiasing treatment for cognitive

biases in ADM is possible, and propose an effective treatment that can become a foundation for

future research. Future research can focus on: testing different debiasing techniques, debiasing

that takes into account other cognitive biases, exploring the workshop’s effectiveness in debiasing

experienced practitioners.

Practitioners can use the presented [161] debiasing workshop for training purposes.

116

8. Debiasing Experts

Article title Debiasing Architectural Decision-Making: Teaching
Software Practitioners.

Authors Klara Borowa, Rodrigo Rebouças de Almeida, and
Marion Wiese.

Status Ongoing review
Contribution Original research idea, research method design, part of

data gathering, most of the data analysis (coding), most
of the paper writing.

117

8. Debiasing Experts

8.1. Preface

This paper presents a yet unpublished study, which addresses the main limitation of the

study from Chapter 7: that it was yet unclear if a similar debiasing effect can be obtained with

practitioner participants in the context of real-life projects.

The workshop in this study is of similar design as the one from Chapter 7, with two key

differences:

• Since the practice of "monitoring the conversation for confirmation bias" did not result

in any visible outcomes, we replaced this debiasing technique. Instead, this study’s

participants explicitly list architectural alternatives – which is supposed to counter the

dangerous combination of anchoring on one solution and then ignoring other possibilities

caused by confirmation bias. This technique is also considered a standard architectural

decision-making technique [94].

• We added examples illustrating the use of each technique in the workshop.

Overall, 18 practitioners from 3 countries (Brazil, Germany and Poland) took part in the study.

They were recruited in pairs, practitioners from one pair had to meet the following criteria:

• They worked on at least one project together;

• They could share details about this system’s architecture;

• They worked in similar roles which allowed them to understand and discuss the system’s

architecture.

One person from each pair participated in the debiasing workshop (workshop group partic-

ipant), and the other did not (control group participant). Then, both took part in think-aloud

sessions where they discussed how an existing architecture could be improved. We compared

the argumentation used by the control group and workshop group participants.

Overall, the following positive effects were observed in debiased participants, in comparison

to the control group:

• Reduced number of biases,

• Increased number of debiasing techniques,

• Decreased number of biased arguments in favor of particular solutions,

• Increased number of on-biased arguments and counterarguments.

The only unexpected side effect that occurred was a slight increase in biased counterargument

count.

118

8. Debiasing Experts

Through the analysis of the participant’s results, we found that additional factors should be

taken into account when attempting to debias practitioners:

• Overuse of low-quality counterarguments,

• Socio-cultural factors –such as respect for leaders, which may have the last word when

discussing architectural decisions,

• Practitioner’s confidence level – most experienced practitioners are more susceptible to

biases,

• Discussing too many architectural decisions in a short time span – this makes practitioners

less focused on high-quality argumentation.

For each of these factors, teaching strategies meant to overcome these hurdles are presented in

this paper.

119

8. Debiasing Experts

8.2. Abstract

Cognitive biases influence decision-making in various areas, including architectural decision-

making, where architects face many choices. Prior research suggests that training individuals

in debiasing techniques during a practical workshop can help reduce the impact of biases. Our

goal was to design and evaluate a debiasing workshop designed for experienced practitioners.

To test the workshop’s effectiveness, we performed an experiment with 18 practitioners split

into control and workshop group pairs. We recorded and analyzed their think-aloud discussions

about improving real-world architectures. The workshop successfully reduced the impact of

all three researched biases (anchoring, confirmation bias, and optimism bias) and increased the

number of arguments and debiasing techniques used by participants. We identified factors that

may reduce the effectiveness of debiasing through such workshop: (1) overuse of low-quality

counterarguments, (2) socio-cultural factors, (3) confidence level, and (4) discussing too many

architectural decisions in a short time span. Overall, we recommend using this workshop as a

basis to educate architects and experienced developers, who usually make architectural decisions,

about typical harmful influences of cognitive bias on their work and how to avoid them. Finally,

we give suggestions on how to improve teaching about architectural decision-making even

further, based on this study’s findings.

8.3. Introduction

Cognitive biases are systematic errors caused by the heuristics the human mind uses to

reduce the complexity of various tasks [160], including decision-making. Cognitive biases

distort human decision-making in various domains: from clinicians making erroneous medical

diagnoses [165] to software developers copying source code without reading it [20]. In 1995,

Stacy and Macmillan [158] first observed the possible impact of cognitive biases in the realm of

software engineering. They noticed that representativeness, availability bias and confirmation

bias can influence software developers’ daily activities. Since then, research on cognitive biases

in software engineering has significantly expanded [14]. The influence of cognitive biases

is particularly impactful in the field of architectural decision-making (ADM)[22] [77] since

software architecture can be considered as a set of design decisions [6]. However, few studies

have focused on behavioral factors (i.e. psychological and human aspects) in ADM, and even

fewer have contained any empirical validation of decision-making techniques [83]. Notable

example of studies that have focused on improving the process of ADM include those that assess

120

8. Debiasing Experts

the usefulness of reflection by Razavian et al. [79] (experiment on students), and Tang et al.

[157] (experiment on students and professionals).

Debiasing is a process that improves one’s judgment by using techniques decreasing the

impact of a particular cognitive bias [78]. Teaching software practitioners through a workshop

can effectively mitigate some influence of cognitive biases [29]. As far as we know, the only

empirically tested debiasing training for ADM was conducted on a group of students with limited

experience in software development [166]. This study had students perform theoretical tasks

and compared the students’ performance based on various different architectures. Given the

doubts expressed by the software engineering community about the validity of the findings in

experiments with student participants [167], [168], determining whether such training can be

effective on experienced practitioners is invaluable. Therefore, the goal of this study is to conduct

a debiasing intervention with experienced practitioner participants.

As such, we strive to answer the following research question:

RQ: How are experienced practitioners influenced by the proposed architectural

decision-making debiasing workshop?

In particular, we explored whether the following two positive effects would appear:

• Would the workshop decrease the number of cognitive bias occurrences?

• Would the workshop increase the participant’s use of debiasing techniques?

To answer this research question, we performed nine controlled experiments with 18 experi-

enced software practitioners, divided into control and training(workshop) groups. Participants

were recruited from three countries ([hidden for double-blind review]) and eight companies.

This study’s main contributions include:

1. The design and empirical evaluation of a workshop that reduces biases impacting practi-

tioners. Our workshop was successful in decreasing the occurrence of all three researched

biases (anchoring, confirmation bias, and optimism bias).

2. A workshop that had two statistically significant improvements: (1) increasing the number

of non-biased counterarguments used by practitioners, and (2) making the participants list

different solution alternatives.

3. We found that the following factors can negatively impact debiasing effects: (1) overuse of

low-quality counterarguments, (2) socio-cultural factors, (3) confidence level, and (4) dis-

cussing too many architectural decisions in a short time span.

Section provides information on previous research relevant to this study. Section describes

121

8. Debiasing Experts

the specifics of our research method. The results of the experiment are presented in Section and

discussed in Section . Section explores the threats to validity. Finally, we summarize this study

in Section .

8.4. Related work

8.4.1. Cognitive biases

The seminal work of Tversky and Kahneman from 1974 [160] introduced the concept of

cognitive biases and described three of them: representatives, availability, and anchoring.

In their work, the researchers found that human beings rely heavily on heuristics during the

decision-making process while often being blind to logical, statistical facts.

These findings later evolved into the dual process theory, describing the human mind as

divided into Systems 1 and 2. System 1 performs fast and intuitive decisions that heavily rely

on heuristics. Inversely, System 2 performs slow decisions that are logical and rule-based. By

using energy mainly for important decisions (System 2), this natural phenomenon allows the

human body to save precious energy when making simplified decisions (System 1). However,

humans are prone to using energy-saving System 1 for decision-making, even in cases that

require rule-based thinking. In that case, cognitive biases might occur [12].

As a counterpoint to biased reasoning, rational reasoning can be described based on the

research by William James [31] as having two components: (1) perception of a specific piece of

factual information, and (2) a logical consequence of this information [31].

Viewing software architecture as a set of design decisions is a well-established concept [6]. It

has resulted in a substantial amount of research regarding issues related to ADM, such as docu-

menting architectural decisions [169], models of architectural decisions [81], decision-making

best practices [94], and human aspects of ADM [75], particularly cognitive biases [77].

The impact of cognitive biases on ADM can have severe consequences, such as designing

sub-par solutions [170] or incurring dangerous architectural technical debt [171].

Based on previous research on cognitive biases in ADM [26], [77], [171], as well as the most

often researched biases in software engineering [14], this study focuses on the following three

cognitive biases: anchoring, confirmation bias, and optimism bias.

Anchoring bias is the decision-maker’s preference for initial information/ideas/solutions

(which then become an ‘anchor’) [160]. Anchoring may, for example, influence developers by

122

8. Debiasing Experts

Table 8.1. Participants (W-workshop group / C-Control group)

No. Pair Group Age IT Role Company Company
No. (years) exp. domain size

(years) (employees)

Pi
lo

t

1 P1 W 28 7 Developer Digital pay-
ment

21-100

2 P1 C 28 2 Developer Digital pay-
ment

21-100

3 P2 W 40 18 Analyst Digital pay-
ment

21 - 100

4 P2 C 37 5 Product Man-
ager

Digital pay-
ment

21 - 100

M
ai

n

5 P3 W 52 20 Developer Media over 8000
6 P3 C 59 38 Developer Media over 8000
7 P4 W 42 20 Developer Marketing Ser-

vices
101-500

8 P4 C 40 20 Developer Marketing Ser-
vices

101-500

9 P5 W 42 20 CTO Finance 101-500
10 P5 C 52 30 Architect Finance 101-500
11 P6 W 39 7 Architect Signal process-

ing
500-5000

12 P6 C 59 38 Systems Engi-
neer

Signal process-
ing

500-5000

13 P7 W 46 20 Architect Retail over 5000
14 P7 C 41 19 Architect Retail over 5000
15 P8 W 29 5 Developer Education 500-5000
16 P8 C 30 4 Developer Education 500-5000
17 P9 W 39 20 Project Man-

ager
Government 101-500

18 P9 C 42 19 Systems Devel-
opment Coor-
dinator

Government 101-500

fixating them on the first numerical estimate that appears during a conversation, which may cause

their time estimates to be inaccurate [172].

Confirmation bias is the tendency to purposefully search and interpret information to verify

one’s beliefs [116]. An example of confirmation bias would be developers’ proneness to writing

unit tests proving that the software works correctly instead of finding defects [154].

Optimism bias is the overestimation of the probability of positive future outcomes [173]. An

example of optimism bias is its impact on project risk management, where individuals ignore

potential risks while they focus on the pros of their preferred choices [174].

123

8. Debiasing Experts

8.4.2. Debiasing

Debiasing refers to the process of identifying and mitigating cognitive biases that may affect

decision-making. Possible types of debiasing treatments can be described using the levels

proposed by Fischhoff [78]. A and B-level treatments are usually a lecture or some other method

of informing practitioners about cognitive biases (A) and how they may impact practitioners

(B). Levels C and D require more organizational resources: a C-level treatment requires giving

personalized feedback to each debiased person, and the D-level requires extensive long-term

training.

In the field of software engineering, two notable C-level debiasing treatments were reportedly

successful. Firstly, rationalizing development time estimates by Shepperd et al. [29], where

researchers purposefully anchored software developers on pessimistic estimates to counter

over-optimistic predictions. Secondly, in ADM, in their short paper, Borowa et al. [166] reported

achieving a debiasing effect on a group of student participants. However, the debiased students

were not impacted by biases less often, but instead used more non-biased arguments in their

reasoning. Additionally, the students performed purely theoretical tasks and their performance

was compared through them performing two different tasks before and after a workshop.

However, neither this nor any other recent study ascertained whether the effect on experienced

practitioners, and real-life architectures, would be similar. Through our study, we have strived

to empirically verify whether a debiasing workshop is effective for experienced practitioners,

working on existing architectures.

8.5. Method

In this study, we ran an experiment with practitioners built on top of an existing debiasing

workshop structure [166]. However, we adapted the workshop and experiment as explained in

the following subsections.

The study was divided into two phases: a pilot phase with two experiments, i.e. two pairs of

practitioners from one company and the main experiment with seven pairs of practitioners for

different companies. While we present some results from the pilot in this paper, the study plan

underwent major changes between these phases, which led us to exclude the pilot’s data from

quantitative calculations (i.e., code count averages and p-values). The differences between the

pilot and the main study are also explained in the respective subsections.

124

8. Debiasing Experts

Step 1:
Discussing

existing
architecture

Step 1:
Discussing

existing
architecture

Pi
lo

t Step 4: Group
Discussion

Transcription &
Translation Coding (1 coder)

Pilot analysis and
experiment
adjustment

Step2: Workshop

M
ai

n

Step2: Workshop Transcription &
Translation

Coding (1 coder
and 1 coding

reviewer)
Coding analysis

Step 4: Think-
aloud separately
about possible
improvements

Experiment
Step3:
Break

Step3:
Break

Analysis

Figure 8.1. Study steps

8.5.1. Sample

We recruited participants through convenience sampling from our network in three countries

[hidden due to the double-blind policy]. Convenience sampling was the most appropriate method

of acquiring participants for two reasons:

• The experiment required participants to discuss existing systems used by their companies.

As such, participants needed to trust the researchers to handle sensitive data appropriately,

which allowed us to face real-world designs instead of theoretical examples.

• We needed to find pairs of practitioners who worked together on developing the same

system and its architecture and had similar roles in the development team. Explaining the

nuances to the participants required personal discussion with one of the researchers.

The participants were informed beforehand that the experiment was related to improving

ADM and about the overall steps of the experiment. However, they were not informed that

the research was connected with cognitive biases, had no access to the workshop materials

beforehand and did not know what tasks they would perform during Step 4 of the experiment.

No pair of participants had the chance to contact another pair to disclose such information.

We finished the data gathering for the main experiment after seven participant pairs partici-

pated. In the domain of usability testing, where think-aloud protocol studies are widely used,

a group of five participants is considered big enough to perform a study [175]. However, we

planned to use the non-parametric Wilcoxon Signed Rank Test [176] to calculate p-values of

code counts during the analysis. Therefore, we opted for a slightly larger amount of participants

since this method is only suited to yield results for at least seven sample pairs. Table 8.1 presents

the basic information about the participants, such as experience, role, and domain.

125

8. Debiasing Experts

8.5.2. The experiment

In this study, we ran an experiment with practitioners, built on top of an existing debiasing

workshop structure [166]. However, we made differences on four specific points.

First, we replaced the least effective debiasing practice, which was that one person monitored

a discussion for confirmation-bias-influenced statements. Instead, our participants were taught to

list multiple solution options for their architectural decisions. Second, we compared the results

for the same architectural task done by similar people by comparing pairs of participants, where

one attended the workshop (the workshop group) and the other did not (the control group). In

contrast, in the experiment of [166], researchers compared varying tasks done before and after

the workshop by the same students. Third, our participants were all experienced practitioners, as

described in Section . Fourth, the designs discussed in the experiment were real-life cases from

the participants’ companies.

The experiment itself consisted of the following four steps (see Figure 8.1):

1. Step 1: Discussing existing architecture (around 30 min.): Both practitioners took part in

a meeting with one researcher. Firstly, they were asked to fill out a simple questionnaire

to gather demographic data about themselves (age, experience, role in the company, etc.).

Then, they were asked to explain to the researcher the architecture of a system they had

both worked on previously. Practitioners had to draw a simple “boxes and arrows” diagram

of the architecture, explain the context of the project, and give the researcher the following

information: (1) the overall idea behind the system, (2) the system’s main components, (3)

relationships between components, and (4) the technologies used. This way, we ensured

that both practitioners knew the architecture at the same level.

2. Step 2: Debiasing workshop (around 60 min.): During this step, the workshop group

participant took part in the debiasing workshop, as described in Section . The control group

participant had a break.

3. Step 3: Break: Research on cognitive biases [12] notes that rational logic-based thinking

is physically exhausting. To avoid tiring the workshop group participants more than the

control group participants, there was always a break before the last step of the experiment.

The time of the break varied but always spanned the time of at least one meal.

4. Step 4: Architecture improvement (around 30 min.): Both participants were asked to identify

issues with the system’s architecture that they presented during Step 1. After that, they were

asked to explain what improvements they would propose in order to resolve these problems.

126

8. Debiasing Experts

The participants were requested to note the changes on the boxes-and-arrows diagram from

Step 1 if appropriate.

In the pilot run with two pairs, we allowed participants to discuss these issues and issues’

solutions together. However, in one pilot experiment, we noticed that this approach caused

one of the participants to omit their opinions. This could be caused by the fact that the other

participant was their superior and dominated the discussion.

In the main experiment, we changed our data gathering approach to a “think-aloud

protocol” session [177]. This method was suggested by Razavian et al. [83] for studying

behavioral factors in ADM. Accordingly, the participants proposed their improvements

separately in the subsequent sessions to avoid interference between them. To understand the

participants’ thought processes, they were asked to voice their thoughts, i.e., “think aloud”,

during the whole process. We could not use evaluation methods such as questionnaires or

having the participant write down their argumentation since cognitive biases occur during an

individual’s thought process, and their occurrence may not be visible when the participants

have additional time to curate their answers.

The experiment’s Step 4 was recorded, with the audio recordings transcribed for further

analysis. All the experiment sessions were performed in the native language of the participants

by a native-speaking researcher, who subsequently translated the transcript to English to make

it accessible to all the authors. We allowed participants to choose between on-site and online

participation. Four experiments were performed during a personal meeting (two pilot and two

main), and five were held online (all main). The experiment plan is available as part of the

additional material [178].

8.5.3. Debiasing Workshop

Our workshop was an intervention that included not only informing about cognitive biases

and the specific effect that they may have on the participants but also training the participants

through a teaching experience with personalized feedback. Therefore, it is a level C debiasing

intervention on Fischoff’s debiasing scale [78]. Such an approach proved effective in debiasing

software developers to increase the accuracy of effort estimates [29].

Overall, the workshop comprised (1) a short lecture about cognitive biases and the work of

Daniel Kahneman and Amos Tversky in general [160] [12], (2) an explanation of how cognitive

biases affect ADM in particular, (3) a design session during which the participant was supposed

127

8. Debiasing Experts

to design a solution for a fictional architecture task and make use of the debiasing techniques.

We taught the following debiasing techniques to the participants:

1. Generating multiple solution options: This technique aims to counter anchoring and

confirmation bias. This bias combination may lead architects to overlook issues with a

solution (confirmation bias) after deciding on an initial one (anchoring). We propose this

technique since it is a basic reasoning technique suggested by many ADM researchers

[94] [179] [180].

2. Listing at least one drawback of the solution alternative: This technique is targeted towards

countering the effects of anchoring, since anchoring often leads designers to be over-focused

on one solution’s advantages [166]. (Drawbacks, unlike risks, always have an impact on the

solution, e.g. a particular component’s license is expensive.)

3. Listing at least one risk associated with the solution alternative: Since individuals are prone

to over-optimistic predictions, explicitly discussing risks is targeted towards countering

optimism bias [166]. (Risks, unlike drawbacks, can have an impact on the solution. However,

the impact of a risk is determined by its probability of occurrence, which means there is a

possibility that the risk may not occur at all.)

The researcher leading the workshop demonstrated the debiasing techniques with an example

and actively assisted the participants in the design session when they were struggling with the

techniques. This was done to provide personalized feedback required of a level C debasing

intervention [78].

8.5.4. Data Analysis

For the data analysis procedure, we used the hypothesis coding technique [164], which

involved creating a set of codes before the coding process. The codes that we used are listed in

Table 8.2.

Recordings from the experiment sessions were transcribed and translated to English by the

researcher organizing the workshop, then coded by another author and, in the main experiment’s

case, the coding was reviewed by an additional author.

In the pilot phase sessions, the coder was unaware of which transcript belonged to the

workshop or control groups. In the main experiment, we took this concept even further and, as

suggested by Ericsson and Simon[177], employed context-free coding as follows:

1. The workshop organizer divided the transcripts into segments (one for each architectural

128

8. Debiasing Experts

decision discussed). This was a natural split since the participants usually discussed one

possible change to the architecture after another.

2. For each pair of participants, the control and workshop groups’ segments were randomly

ordered.

3. Another researcher coded the segments, without knowledge of whether the particular

segment belonged to the workshop or control group participant.

4. An additional researcher reviewed the coding and discussed changes with the original coder

until a consensus was reached on all codes.

5. The workshop organizer revealed the participants’ information to create a summary of each

workshop’s coding.

We anticipated that a coder might unconsciously try to find more bias-related codes for the

control group participants. The context-free coding method aims to decrease the possibility of

this researcher’s bias affecting the study’s outcome.

We evaluated our codes as follows: (1) We created the sum of all codes for a particular

measurement (see Table 8.2) for the control and workshop participants. (2) We checked whether

the measurements for cognitive biases and bias-impacted statements decreased. (3) We checked

whether the measurements of debiasing techniques and non-biased statements increased.

In the work of Borowa et al. [166], the authors assumed that if most arguments used while

discussing one decision were non-biased, then the decision was non-biased. In our work, we have

not followed this assumption since one argument (both biased and non-biased) can be decisive in

leading decision-makers to choose a solution despite other arguments.

In order to determine whether the experiment was successful, we defined a set of research

hypotheses (HR):

• In the case of values that the workshop strived to decrease (biased arguments/counterar-

guments, cognitive biases), the research hypothesis (HR) was that the measurements with

the workshop (workshop group) were smaller than without it (control group). Our null

hypothesis (H0) was that the control group measurements were smaller than or equal to the

workshop group measurements.

• The opposite was the case with values that the workshop tried to increase (not biased

arguments/counterarguments, use of debiasing techniques). Where our research hypothesis

(HR) was that the measurements with the workshop (workshop group) were bigger than

129

8. Debiasing Experts

Table 8.2. Coding scheme: adapted from [166]

Code Code meaning Description
Arg Argument A statement in support of a possible solution alternative.
Carg Counterargument A statement in opposition to choosing a particular solution alterna-

tive.
Anch Anchoring A statement suggesting that the participant is impacted by anchor-

ing.
Conf Confirmation bias A Statement suggesting that the participant is impacted by a confir-

mation bias.
Opt Optimism bias A statement suggesting that the participant is impacted by an opti-

mism bias.
Ddraw Decision’s draw-

back
Use of the anti-anchoring technique, i.e., a statement where the
participant discusses a drawback of the solution alternative.

Dmulti Decision with multi-
ple alternatives

Use of the anti-confirmation bias and anti-anchoring technique
, i.e., a statement where the participant mentions more than one
solution alternative.

Drisk Decision’s risk Use of the anti-optimism bias technique, i.e. a statement where
the participant discusses a risk associated with a solution alternative.

without it (control group). In these cases, the null hypothesis (H0) was that the control

group measurements were bigger (or equal to) the workshop group measurements.

In order to examine which results are statistically significant, and as such can be considered

as accepted with high confidence level, we performed the non-parametric Wilcoxon Signed Rank

test [176] for each of the measurements and the percentage of biased statements (i.e. arguments

and counterarguments). This parametric test is used to measure whether a statistical difference

can be observed between small paired (dependent) data samples. We consider the control group

and workshop group participants to be dependent since they both shared an understanding of the

particular architecture and performed the task of discussing improvements for the same systems.

We accept HR as proven in a statistically significant manner in cases where the p-value is

smaller than 0.05, i.e., there is a less than 5% chance that HR is false. In the case of p-values

smaller than 0.1 but greater than 0.05, we cannot accept HR as statistically significant, but

we consider the possibility that this may be due to our limited sample. This means there is a

considerable probability that further research might still show the respective research hypotheses

can be accepted.

8.6. Results

In this section, we present the results of our analysis. Due to the change in data-gathering

methods, the results from the pilot study (Pairs P1 and P2) were not included in any calculations

130

8. Debiasing Experts

Figure 8.2. Average code sums for each measured value

(p-values, overall code sum/average for control/workshop group) but are presented in this section

as well.

Figure 8.2 showcases the average code counts for each measurement totaled across all

participants. Overall, when only taking the code averages into consideration, most measured

values changed in accordance to the research hypothesis HR. That is: (1) each of the three

researched biases occurrences decreased, (2) the use of all debiasing techniques increased, (3)

the amount of arguments and counterarguments increased, (4) the amount of biased arguments

decreased.

However, one single measurement was not as we hypothesized. The amount of biased

counterarguments slightly increased (from an average of 2.29 in the control group to 2.71 in the

workshop group).

8.6.1. Statistical significance

The p-values calculated using the Wilcoxon Signed Rank test [176] are presented in Table 8.3.

We calculated the p-values for all measurements that we coded and the percentage of biased

statements. Of all measured values, changes were statistically relevant in two cases: (1) The

increase of non-biased counterarguments and (2) the increased use of the “listing multiple

solutions” debiasing technique.

131

8. Debiasing Experts

Table 8.3. p-values for each measurement

Measurement Control
group aver-
age of code
sums

Workshop
group aver-
age of code
sums

p-value Research
hypothesis (HR)

Arg 21 23.14 0.3997 Workshop
>Control

Carg 4.29 8.14 0.0574 Workshop
>Control

Anch 6.43 4.71 0.1721 Workshop
<Control

Conf 5.29 4.29 0.4063 Workshop
<Control

Opt 5.43 1.71 0.0862 Workshop
<Control

Biases sum 17.15 10.71 0.1094 Workshop
<Control

Biased Args 10.29 5.86 0.0739 Workshop
<Control

Biased Cargs 2.29 2.71 0.4461 Workshop
<Control

Not biased Args 10.71 17.29 0.1342 Workshop
>Control

Not biased Cargs 2.14 5.57 0.0449 Workshop
>Control

% Biased statements 49,18% 28,09% 0.0781 Workshop
<Control

Ddraw 4.14 5.57 0.1114 Workshop
>Control

Dmulti 2.14 4.14 0.029 Workshop
>Control

Drisk 4.29 4.86 0.5 Workshop
>Control

Techniques use sum 10.57 14.57 0.07813 Workshop
>Control

132

8. Debiasing Experts

Table 8.4. (Non-)Biased Arguments and Counterarguments(B – Biased, NB – Non-biased)

Control Workshop Control Workshop Difference
Arguments Counterarg. Arguments Counterarg. Biased Biased Biased

Pair B NB B NB B NB B NB statements
[%]

statements
[%]

statements
[pp]

Pi
lo

t P1 5 2 1 2 4 0 1 6 60% 38% -22
P2 8 1 0 1 1 3 0 1 80% 17% -63

M
ai

n

P3 12 10 4 1 8 8 2 9 59% 36% -24
P4 3 6 1 1 11 5 9 4 36% 67% 30
P5 14 22 1 4 3 20 0 1 37% 11% -26
P6 9 10 2 3 5 13 3 7 46% 26% -20
P7 24 17 6 4 10 54 3 13 59% 15% -43
P8 3 1 0 1 1 10 0 1 60% 8% -52
P9 7 9 2 1 3 11 2 4 47% 24% -24

8.6.2. Arguments and Counterarguments

Table 8.4 presents the numbers of arguments and counterarguments for each pair of partici-

pants. When combined with Figure 8.2, which shows the average of each type of argument in

the control and workshop groups, it allows us to make the following observations:

• The number of arguments in support of a solution was greater in the case of the workshop

group.

• The workshop group managed to discuss more counterarguments overall.

• Workshop participants used less biased arguments.

• Both the number of biased and non-biased counterarguments was larger for workshop

participants.

Additionally, based on the data shown in in Table 8.3 we have more observations regarding

the statistical significance of the results related to arguments and counterarguments. Unlike

Borowa et al. [166], we did not find a statistically significant decrease in the percentage of

biased statements or the a statistically significant increase in the number of non-biased arguments.

However, this may be due to our limited sample. Since only in one case did the workshop

participant exhibit a higher percentage of biased statements than the control group participant

(pair P4) such visible effect did occur despite not being statistically significant. However, the

increase of non-biased counterarguments was significant (p-value = 0.0449). An interesting

point is that the number of biased arguments also decreased notably. While this decrease is

not statistically significant to the 5% significance level, this may be due to our limited sample

(p-value = 0.0739).

133

8. Debiasing Experts

Table 8.5. Occurrences of Cognitive Bias (ANCH – Anchoring, OPT – Optimism bias, CONF – Confirmation bias)

Control Workshop Control Workshop Difference
Pair ANCH CONF OPT ANCH CONF OPT Bias sum Bias sum Bias sum

Pi
lo

t P1 6 3 1 1 1 1 10 3 -7
P2 7 3 1 1 0 0 11 1 -10

M
ai

n

P3 9 7 2 7 4 0 18 11 -7
P4 3 1 2 12 11 0 6 23 17
P5 10 3 8 1 2 3 21 6 -15
P6 9 3 0 5 3 1 12 9 -3
P7 6 21 23 6 6 4 50 16 -34
P8 1 0 3 0 0 2 4 2 -2
P9 7 2 0 2 4 2 9 8 -1

8.6.3. Cognitive biases

While Figure 8.2 shows the overall sum of bias occurrences in each of the control and

workshop groups, Table 8.5 presents the number of bias occurrences from each participant pair.

Overall, the workshop group participants were less impacted by each of the researched biases,

with only one workshop participant being more susceptible to biases than their colleague (pair

P4). While these overall decreases can not be considered statistically significant to the 5% level,

they are noticeable in almost every participant pair for every researched bias. The one sole

exception to this is pair P4.

In Borowa et al.’s research [166], the student participants of the workshop did not exhibit

decreased susceptibility to cognitive biases at all. This means that in this study, such effect was

achieved for the first time.

8.6.4. Debiasing techniques

Table 8.6 shows how many debiasing techniques were used by each participant, while Figure

8.2 shows the sums of each technique’s use in the workshop and control groups.

Overall, the workshop participants used each of the three techniques more frequently than

the control group participants; this was not the case only for pair P5. Additionally, the “listing

multiple options” technique was used significantly more (p-value = 0.029) by workshop

participants.

8.6.5. Decisions

Table 8.7 showcases how many architectural decisions were discussed by each participant.

We did not attempt to influence the decision count through this experiment, so no p-values

were calculated. However, it may be notable that in most cases(six out of nine), the workshop

participants discussed fewer architectural decisions than their control group colleagues.

134

8. Debiasing Experts

Table 8.6. Use of Debiasing techniques
(DRAW – Stating drawback, MULTI – Listing solution alternatives , RISK – Stating risks)

Control Workshop Control Workshop Difference
Pair DRAW MULTI RISK DRAW MULTI RISK Techniques Techniques Techniques

Pi
lo

t P1 2 0 2 6 1 2 4 9 5
P2 1 0 0 1 0 1 1 2 1

M
ai

n

P3 4 0 2 5 3 2 6 10 4
P4 2 0 2 2 5 0 4 7 3
P5 8 5 11 5 5 7 24 17 -7
P6 0 1 0 5 3 2 1 10 9
P7 9 9 12 13 9 20 30 42 12
P8 2 0 1 5 1 2 3 8 5
P9 4 0 2 4 3 1 6 8 2

Table 8.7. Decisions discussed

Pair number
P1 P2 P3 P4 P5 P6 P7 P8 P9

Workshop 4 4 6 9 11 11 9 5 16
Control 5 2 11 19 8 12 6 12 18
Difference -1 2 -5 -10 3 -1 3 -7 -2

8.7. Discussion

Our debiasing workshop succeeded in decreasing the occurrence of all three biases (anchor-

ing, confirmation bias, optimism bias) for the workshop participants. Although this decreases

were not statistically significant, this had never been achieved previously.

The amounts of uses of each debiasing technique that we taught increased for workshop

participants as well.

Additionally, we observed two statistically significant changes in the case of the workshop

group: (1) the increase of non-biased counterarguments and (2) the increased use of the debiasing

technique of “listing multiple solution options”.

While most measured values did change as we hypothesized, in most cases, the results were

not statistically significant. However, this does not necessarily mean this study’s results are not

valuable. It does mean however, that not statistically significant results have weaker evidence

supporting their validity and should be considered more carefully. Proper calculation of statistical

significance in the case of such small samples is not easily achievable, and we used the p-values

in this study mainly to distinguish results with the highest validity.

We found it intriguing that, in comparison to the study on students [166], the frequency of

non-biased arguments did not increase in a statistically significant manner. This implies that, for

135

8. Debiasing Experts

practitioners, the increase in non-biased counterarguments was more severe than in non-biased

arguments. We suspect this may be due to the practitioners’ having the preexisting skill of

arguing in favor of their chosen solutions since they most likely had to do this repeatedly in

their workplace. On the other hand, students may find the formulation of both pro and con

arguments new since university courses do not usually allow students much creative freedom

with architectural decisions.

8.7.1. Lessons learned

Some of the study’s participants produced notably unexpected results.

A side effect of the workshop seems to be a slight increase in the use of biased counter-

arguments by workshop participants, most likely because the workshop focused on negative

factors such as decision-related risks and drawbacks. As such, workshop participants may have

over-focused on creating numerous counterarguments with less care about their quality. However,

the beneficial increase in non-biased counterarguments was significantly higher.

Teaching suggestion 1: Focus on high-quality counterarguments. Compared to students,

experienced practitioners have fewer problems in specifying non-biased arguments in support

of decisions. As such, when teaching practitioners, more focus should be on discussing

fact-based counterarguments.

Additionally, Participant No 3 (Pair P2 from the pilot) discussed only two design decisions,

which was the smallest number of decisions discussed by all the participants. In this case, we

suspect that this resulted from a socio-cultural factor associated with group decision-making

[181] - the junior participant felt internal pressure due to the presence of the senior participant

(control group).

Teaching suggestion 2: Debiasing might only be effective when team members of all

seniority levels take part in it. Practitioners must be made aware that this training’s

debiasing effect can be significantly decreased if thr participant’s colleagues who are higher

in the hierarchy dismiss their concerns. As such, teaching only younger developers while

omitting senior team members or leaders may not be effective.

Furthermore, the use of debiasing techniques also increased for almost all participant pairs,

except one. In the case of pair P5, Participant No 9, who was the workshop group participant,

136

8. Debiasing Experts

was also the CTO of the company. During the experiment, the author conducting it noticed that

the attitude of the participant suggested that they considered the contents of the workshop to

be trivial. The participant’s confidence level was most likely heightened due to their high

position in the company, where they were previously the head architect for many years. It is

likely that this made them more susceptible to cognitive biases and less likely to use the debiasing

techniques.

Teaching suggestion 3: Focus on high-level and experienced team members. If the

participant has a high position in the company and vast engineering expertise, they may have

a high confidence level in the architecture of their system and thus be less likely to learn

from this workshop. In the case of these participants, take care to specifically inform them of

this danger.

Finally, participant No. 7 (Pair 4) was the only workshop group participant who gave more

biased statements than the control group participant. The only metric that seemingly distinguishes

participant No. 7 is that they choose to discuss the highest number of architectural decisions

(19) from all the participants. This is in line with classic research on cognitive biases, which

defines them as a natural heuristic used by the human mind to avoid overload with too many tasks

[12]. This means that when too many decisions are considered, the human mind will behave in

an energy-saving manner that makes biases more likely to occur.

Teaching suggestion 4: Avoid discussing too many decisions. Inform participants that

considering too many architectural decisions in a short time span is likely to produce an

increase in cognitive bias influences. Try to moderate the training in such a way that focuses

on high-quality argumentation of a lower number of key decisions.

8.8. Threats to validity

Our threats to validity are described based on the guidelines for experiments in software

engineering created by Wohlin et al. [182]:

Construct Validity As we performed a controlled experiment, our study heavily relies on its

construct validity. While we carefully designed the experiment to maximize construct validity

(see Section), one threat that could impact the results is how each researcher could lead the

137

8. Debiasing Experts

debiasing workshop differently. To handle the potential particularities and cultural factors

that could affect the experiment, we discussed possible scenarios that could occur during the

experiment before conducting it and then used the same workshop plan and slides. Furthermore,

we performed a pilot run of the workshop to enhance our study’s design. When we observed that

one pilot study participant being the other’s superior may be such an additional factor impacting

validity, we changed the last step of the experiment from group discussion to separate think-aloud

protocol sessions. Additionally, we had the participants take a break before Step 4 of the study,

to avoid overtiring workshop participants. Finally, every control/workshop pair of participants

discussed the same architecture during Step 4 of the study, which makes the results for both

groups simpler to compare. This is a difference from previous research that performed the

comparison of before&after the workshop, using two different architectural tasks [166].

Internal Validity Our experimental environment was carefully controlled to ascertain internal

validity. We took care to not allow external factors to impact the participants: (1) We did not tell

them about cognitive biases beforehand. (2) They did not know about Step 4 of the experiment

beforehand, so they could not prepare for it. (3) During Step 4, participants did not get the

chance to contact anyone or use the internet for help. Additionally, we employed context-free

coding to avoid the coder’s unconscious desire to showcase that the workshop works as planned.

An additional author then reviewed this coding.

Conclusion Validity Regarding conclusion validity, we have the threat of a low number

of experiments executed, which is due to the fact that it is hard to find practitioners who are

willing to invest three hours into a scientific experiment. Finding participants was particularly

challenging since our experiment required (1) pairs of participants who worked together on

the same project and (2) sensitive data about their real-life architecture. However, this low

sample size puts a risk on the statistical significance of the findings. To counteract this threat, we

performed the non-parametric Wilcoxon Signed Rank Test, which makes it possible to check

the statistical significance of small paired samples. Still, a larger sample would provide more

confidence in the findings.

External Validity As common for a controlled experiment, the external validity is ham-

pered by the strictly controlled setting. However, we did try to perform the experiment in

the participants’ preferred environment: in their company’s office or using their preferred

videoconferencing software. Additionally, all our participants were experienced practitioners

who discussed real-life architectures from various domains.

138

8. Debiasing Experts

8.9. Conclusion

We performed a debiasing workshop in order to explore its impact on experienced software

practitioners. The design of our study was based on the structure by Borowa et al. [166], with

some adaptations (as explained in Section). We divided participants into separate treatment

(workshop) and control groups as it is common in multiple studies [75], [79]. We also employed

the think-aloud protocol study method, as suggested by Razavian et al. [83] as appropriate for

researching behavioral aspects of ADM.

The research question that we aimed to answer was:

RQ: How are experienced practitioners influenced by the proposed architectural

decision-making debiasing workshop?

Through this study, we found that:

1. Our workshop successfully decreased occurences if cognitive bias for all three researched

biases (anchoring, confirmation bias, and optimism bias).

2. The use of the proposed debasing techniques that were taught increased.

3. Two effects were statistically significant: (1) the rise of non-biased counterarguments and

(2) the increased frequency of using the listing multiple solutions technique.

4. There are additional factors impacting successful debiasing ADM, such as: (1) Overuse of

low-quality counterarguments, (2) socio-cultural factors, (3) confidence level, and (4) dis-

cussing too many architectural decisions in a short time span.

Educators intending to perform such a debiasing workshop in practice can use the teaching

materials we prepared for this study either directly or using them as a basis for their own

materials [178]. Additionally, we encourage them to employ the suggestions presented in

Section .

For future work, we propose focusing on longitudinal studies in a real-world setting to

ensure that the debiasing treatment has a long-term impact.

8.10. Data availability

The experiment plan, workshop plan, and workshop slides are available on Zenodo [178].

139

9. Discussion and limitations

This thesis is based on a series of research papers (Chapters 3–8), which focused on the

following aspects of architectural decision-making: architectural decision rationales, cognitive

biases impact on architectural decisions, the impact of cognitive biases on architectural technical

debt and the design of a debiasing intervention meant to alleviate the negative impact of cognitive

biases on architectural decisions. The results of these studies are discussed below.

Previously, empirical evidence of design rationales in architectural decision-making was

limited [83] and based mainly on inflexible surveys asking about predefined rationales [82] or

interviews with a small number of participants [85] [84]. The study presented in Chapter 3

employed a mixed-methods approach that allowed for a bigger sample from questionnaires

and flexibility (the questionnaires contained open-ended questions and were supplemented by

interviews). Additionally, data analysis considered the practitioner’s experience level, which led

to new findings. As such, it is the most mature work on architectural design rationales so far.

The research revealed that practitioners’ architectural decisions were mainly motivated by the

following rationales: ease of use for development activities, maintainability, performance, prior

knowledge/experience in using the solution, and time/deadline. These results partially confirm the

findings of Weinreich et al. [84], who discovered that the most impactful rationale was "Personal

experience / Preferences.” Additionally, the quality attributes of portability and compatibility

were found to be of very low significance to practitioners since modern technologies (such as

containerization) and communication standards (such as REST API) were considered a universal

answer to issues with portability and compatibility.

Finally, practitioners in the middle of their careers (5 to 14 years of experience) were the only

experience group that preferred choosing architectural solutions they had no prior experience

with to try something new. This effect could be attributed to their confidence (unlike less

experienced practitioners) and thirst to improve their skills to obtain a promotion (unlike most

experienced practitioners).

The most relevant rationales that motivated practitioners’ architectural decisions were not

solely based on facts about the software’s quality or the limitations of the project. Although

practitioners did consider them (mainly maintainability, performance, and deadlines), the deci-

sions were based mostly on personal preferences, experiences, and the hope to decrease their

own workload. These three, however, are all possible cognitive bias antecedents. Preferences

are naturally based on a small sample of experiences, and cognitive biases (such as representa-

140

9. Discussion and limitations

tiveness [33]) are often the result of erroneous perceptions of reality based on an individual’s

experiences [11].

Contribution 1: Set of rationales which motivate architectural decisions made by

practitioners.

Many of these rationales seem to be cognitive bias antecedents. In particular, the practi-

tioner’s personal preferences, experiences, and hope for a decreased workload.

While researchers have been interested in the impact of cognitive biases on architectural

decision-making for over a decade [22], they usually investigated a small number of pre-selected

biases [77]. This means that no researcher before has explored a broader scope of possible bias

occurrences in architectural decision-making without making prior assumptions about which

biases whould be relevant.

Chapter 4 presents a study that broadly assesses cognitive biases’ impact on architectural

decision-making and their consequences. The novelty of this study stems from its data-gathering

method. Instead of pre-selecting bias definitions before data gathering, a more flexible approach

was taken. Participants learned the definition of cognitive biases and then described real-life

situations in which they believed a cognitive bias occurred. During the data analysis, these

descriptions were mapped to the definition of particular cognitive biases. The cognitive biases that

were shown to influence architectural decision-making are: the framing effect, confirmation bias,

the IKEA effect, Parkinson’s law of triviality, anchoring, the curse of knowledge, pro-innovation

bias, the planning fallacy, the bandwagon effect, irrational escalation, the law of instrument, and

optimism bias. This list partially confirms the findings of van Vliet and Tang [19], who found

that anchoring, the framing effect, and confirmation bias impacted architects.

Chapter 4 additionally presents specific situations when these biases may occur. For example,

the following three types of situations were rated as most often occurring by the study participants:

• Assessment of a system based on marketing information (framing effect).

• Judging the complexity of a problem based on the client’s expectations instead of factual

data (confirmation bias).

• Overvaluation of the quality of a system by its creators (IKEA effect).

Overall, the list of biases developed in this study is a foundation for future research on

cognitive biases in architectural decision-making. It enables researchers to focus on the biases

141

9. Discussion and limitations

most likely relevant to architectural decision-making instead of exploring the space of over 37

cognitive biases detected in various software engineering papers [14].

Furthermore, this study defines which aspects of architectural decision-making can be im-

pacted by these biases. These include mainly: the architect’s preferences, the scope of considered

alternatives, and the perception of requirements. The impact on the architect’s preferences is

of particular importance since this exact aspect matches the most influential rationale found in

chapter 3 and previous research [84].

Contribution 2: Set of cognitive biases that impact architectural decision-making.

This list includes which aspects of architectural decision-making may be influenced by

each of these biases.

Only a small number of researchers have suggested previously that cognitive biases may

influence the occurrence of technical debt. However, they did not provide any empirical evidence

for such a relationship [20] [128] [127]. Additionally, it has been proven that architectural

decisions may lead to incurring architectural technical debt [25]. As such, it seemed likely that

cognitive biases might make practitioners more likely to incur architectural technical debt. Since

architectural technical debt, in particular, is considered the most dangerous type of technical debt

[24], it was crucial to resolve whether this impact actually existed.

Research presented in Chapter 5 proves that cognitive biases may make software architects

incur unnecessary technical debt. Almost all biases listed in Chapter 4 were possible culprits,

with three being the most influential: anchoring, confirmation bias, and optimism bias. Notably,

anchoring and optimism bias impacted the occurrence of "Architectural Lock-in" technical debt

items [127]. Incurring of this type of debt can result from a specific bias interaction: first,

practitioners choose the first solution that they can find (anchoring) and then take a "leap of faith"

in the hope that it will be satisfactory without considering the risks of their decision (optimism

bias). Another notable architectural technical debt item was "Re-inventing the wheel," [127]

which may be caused by confirmation bias, when the practitioners unnecessarily write major

components from scratch instead of searching for high-quality, pre-existing solutions.

Contribution 3: Cognitive biases may make software architects incur unnecessary

architectural technical debt.

142

9. Discussion and limitations

Three cognitive biases are the biggest culprits with regard to technical debt: anchoring,

confirmation bias, and optimism bias.

Cognitive biases may impede the architectural decision-making process, significantly de-

creasing the software’s quality. Incurring unnecessary architectural technical debt is only one

example of such impact. Cognitive biases, in general, disrupt basic decision-making aspects,

such as searching for solution alternatives, and the perception of requirements can be impacted

by cognitive biases (see Chapter 4).

To minimize this effect, debiasing techniques are needed. However, this is a major challenge

since there is clearly a lack of empirically verified debiasing strategies in software engineer-

ing [14].

One such study was done by Shepperd et al., who focused on improving development

time estimates [29]. While empirical evaluation studies exist on improving architectural

decision-making [79] [157], none before specifically targeted cognitive bias prevention. This

has been addressed in this thesis, by the development and evaluation of a successful debiasing

intervention (Chapters 6-8).

Chapter 6 showcases a pilot study that tested whether a B-level [78] intervention (informing

about biases through a presentation) would be effective. While it did not provide a debiasing

effect, it showcased how the three researched biases (anchoring, optimism bias, and confirmation

bias) interacted with each other, strengthening their negative impact.

When making architectural decisions, architects often anchor on the first solution they came

up with. Then, opposition against such decisions is silenced by confirmation bias – often,

the symptom of this is the "We already decided on that" argument used by coworkers. Finally,

optimism bias affects the overall atmosphere during decision-making, making practitioners

believe that "everything will be ok" while ignoring possible risks.

This triad of biases is most likely fueled by the rationales found in Chapter 3. Practitioners

prefer solutions that minimize the required effort for development overall. However, information

about what is "simple and easy" comes from their prior experiences, which may not be reliable.

Contribution 4: The wicked triad – anchoring, optimism, and confirmation bias.

These three cognitive biases combine to cause problematic architectural decisions: fast

143

9. Discussion and limitations

anchoring on a solution, optimistic belief that no more consideration is necessary, and

avoidance of any information that does not fit this narrative (confirmation bias).

Based on these three observed bias impacts, three debiasing techniques meant to counter them

were proposed:

1. Discussing solution drawbacks;

2. Discussing solution risk;

3. Having someone monitor the discussion for the "but we already decided on that" argument.

Chapter 7 showcases the results of a C-level [78] debiasing workshop, during which students

were taught about cognitive biases in architectural decision-making, and they participated in

practical exercises for using the debiasing techniques. This workshop successfully increased

the student’s use of non-biased (i.e., based on factual data) argumentation for the discussed

architectural solutions. However, the number of bias occurrences did not change noticeably.

Additionally, one of the three debiasing techniques was seldom used by participants during group

discussion, that is, having someone monitor the discussion to avoid the "but we already decided

on that" argument.

Subsequently, the workshop was further improved: the "Have someone monitor the discus-

sion" debiasing technique was replaced with the "listing multiple solutions" technique. Then, the

workshop was empirically verified on 18 experienced practitioners from three countries (Chapter

8). In this case, the workshop improved almost all measured values:

• The number of non-biased (i.e., based on facts) arguments increased,

• The number of non-biased counterarguments increased,

• The number of biased arguments decreased,

• The number of anchoring occurrences decreased,

• The number of confirmation bias occurrences decreased,

• The number of optimism bias occurrences decreased,

• The number of uses for each of the three debiasing techniques increased.

Contribution 5: Empirically validated debiasing workshop.

The debiasing workshop was proven to be an effective debiasing intervention for both

students and experienced practitioners.

144

9. Discussion and limitations

Another finding of this thesis is that the debiasing effect on students and practitioners seems

slightly different.

The workshop made students (see Chapter 7) use more non-biased arguments and counterar-

guments, but it did not decrease the number of bias occurrences. In the case of practitioners (see

Chapter 8), the number of bias occurrences impacting workshop participants was actually smaller.

The workshop also had a beneficial effect in decreasing the number of biased arguments and

increasing the number of non-biased arguments and counterarguments. However, practitioners

also exhibited a slight increase in their biased counterarguments count, which was a negative side

effect of the debasing workshop. This leads to the conclusion that while beginners have to be

motivated to argue their choices, experts have to be trained on the quality of the argumentation.

Still, in both groups, using counterarguments (and, as such - considering drawbacks and risks)

seems to be the key to rational decision-making.

Contribution 6: Students and experienced practitioners react differently to a

debiasing workshop.

Still, in both cases, the key seems to lay in training focused on high-quality counterargu-

ments, which consider architectural solutions’ drawbacks and risks.

9.0.1. Limitations

As in the case of any research, its limitations have to be considered. Firstly, Chapters 3–5 are

based on reports on practitioners’ previous experiences. It is possible that their memory of past

events was not fully accurate or that they based their knowledge on assumptions, e.g., about their

colleague’s decision-making, was faulty. Participants may have also decided not to share the

whole truth of their experiences, for example, due to shame about their own past mistakes. In all

of these cases, we attempted to counter this by finding a diverse sample of practitioners.

Additionally, a limitation that has to be considered is that the debiasing interventions on

students and practitioners differed in both data gathering and data analysis methods. As such,

comparing the results from these studies may lead to unintentionally erroneous assumptions. The

last experiment on practitioners can be considered the most mature of all the debiasing attempts

since it is based on a comparison of practitioners performing the same architectural tasks, and

the data analysis includes context-free coding [177], which made the coding researcher unable to

determine whether they are coding the control or workshop participant’s transcript segment.

145

10. Conclusion

This thesis presents a multi-step, in-depth study of cognitive biases in architectural decision-making.

Five of the six papers presented in this thesis have already been published in peer-reviewed

venues. These make it possible to answer the following research questions:

RQ1: What rationales are the main reasons behind decisions impacting software practi-

tioner’s architectural decision-making?

This work showcases a list of common rationales behind architectural decisions (Table 3.3).

The most common rationales with which practitioners justify their decisions include ease of use

for development, maintainability, performance, prior knowledge/experience in using the solution,

and time/deadlines. Additionally, the origins of why participants used these rationales are

presented as well (Section 3.6.2). The most prominent rationale’s origins include: practitioner’s

prior experience, client focus, decreased workload.

RQ2: How do cognitive biases impact architectural decision-making?

This thesis presents a list of 11 cognitive biases that affect architectural decision-making

(Section 4.5.2), as well as a detailed description of the specific impacts of these biases.

RQ3: Does cognitive biases’ impact on architectural decision-making cause architectural

technical debt? The work presented in this thesis reports how cognitive biases may impact

decisions related to architectural technical debt. The specific biases that are the most prominent

in this case are optimism bias, confirmation bias, and anchoring (Table 5.4). Additionally, the

antecedents that preceded the occurrence of these biases are discussed(Section 5.6.4), as well as

the types of architectural technical debt incurred due to biases (Section 5.6.3).

RQ4: How can the negative impact of cognitive biases on architectural decision-making

be alleviated? It is possible to alleviate the impact of cognitive biases on architectural

decision-making. However, successful debiasing requires at least C-level debiasing inter-

ventions [78], i.e., simply educating about cognitive biases and their impact on architectural

decision-making is not enough. Debiased persons have to learn debiasing techniques through

practical exercises.

This thesis shows three experiments that resulted in a successful debiasing intervention:

1. A B-level intervention (a lecture without practical exercises nor information on debiasing

techniques) on a small group of students: there was no debiasing effect, but the wicked bias

triad was identified, and a set of debiasing techniques was proposed.

2. An experiment on 12 groups of students that took part in a C-level debiasing workshop,

146

10. Conclusion

which resulted in the increased use of rational arguments and counterarguments. However,

the bias occurrences did not decrease.

3. An improved C-level debiasing workshop was tested with 18 practitioner participants who

discussed real-life architectural designs. In their case, a decrease in bias occurrence was

observed.

.

This thesis, overall, presents a body of work that significantly expands existing knowledge on

cognitive biases in architectural decision-making with:

• The understanding of the impact of cognitive biases on architectural decision-making, with

a particular focus on architectural technical debt.

• A successful, empirically validated, debiasing intervention.

Future work could focus on the longitudinal effects of the debiasing interventions since the

debiasing effect may possibly diminish over time. Additionally, such techniques as shadowing

could be used to observe practitioners in their everyday work and to observe the changes in

practitioners’ behavior during real-life architectural decision-making. Furthermore, besides the

wicked triad, other bias interactions may exist. As such, future research on bias interactions in

architectural decision-making may be appropriate.

10.0.1. Data availability

Data for the debiasing workshops from Chapters 7 and 8 are available online [161] [178]. As

such, they may be used by anyone wishing to perform a debiasing intervention.

147

References

[1] Boehm, “Software engineering”, IEEE Transactions on Computers, vol. C-25, no. 12,

pp. 1226–1241, 1976. DOI: 10.1109/TC.1976.1674590.

[2] P. Naur and B. Randell, Software Engineering: Report of a conference sponsored by

the NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968, Brussels, Scientific

Affairs Division, NATO. 1969.

[3] P. Bourque, R. E. Fairley, and I. C. Society, Guide to the Software Engineering Body of

Knowledge (SWEBOK(R)): Version 3.0, 3rd. Washington, DC, USA: IEEE Computer

Society Press, 2014, ISBN: 0769551661.

[4] J. Buxton and B. Randell, Software Engineering Techniques: Report on a conference

sponsored by the Science Committee, Rome, Italy, 27th to 31st October 1969. 1960.

[5] D. E. Perry and A. L. Wolf, “Foundations for the study of software architecture”, ACM

SIGSOFT Software engineering notes, vol. 17, no. 4, pp. 40–52, 1992.

[6] A. Jansen and J. Bosch, “Software architecture as a set of architectural design decisions”,

in 5th Working IEEE/IFIP Conference on Software Architecture (WICSA’05), IEEE,

2005, pp. 109–120.

[7] P. B. Kruchten, “The 4+ 1 view model of architecture”, IEEE software, vol. 12, no. 6,

pp. 42–50, 1995.

[8] ISO/IEC/IEEE, “Systems and software engineering – architecture description”, ISO/IEC/IEEE

42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000), pp. 1–46,

Jan. 2011.

[9] S. Brown, “The c4 model for software architecture”, Updated August, vol. 1, 2018.

[10] A. Tversky and D. Kahneman, Judgment under uncertainty: Heuristics and biases. utility,

probability, and human decision making, 185 (4157), 141–162, 1975.

[11] D. Kahneman, Thinking, fast and slow. Macmillan, 2011.

[12] D. Kahneman, “Think fast, think slow”, Farrar, Straus and Giroux, New York, 2011.

[13] NobelPrize.org, Daniel kahneman – facts, https://www.nobelprize.org/

prizes/economic-sciences/2002/kahneman/facts/, Accessed: 03.01.2024.

[14] R. Mohanani, I. Salman, B. Turhan, P. Rodriguez, and P. Ralph, “Cognitive Biases in

Software Engineering: A Systematic Mapping Study”, IEEE Transactions on Software

Engineering, vol. 5589, no. c, 2018, ISSN: 19393520. DOI: 10.1109/TSE.2018.

2877759.

149

https://doi.org/10.1109/TC.1976.1674590
https://www.nobelprize.org/prizes/economic-sciences/2002/kahneman/facts/
https://www.nobelprize.org/prizes/economic-sciences/2002/kahneman/facts/
https://doi.org/10.1109/TSE.2018.2877759
https://doi.org/10.1109/TSE.2018.2877759

10. References

[15] R. Mohanani, P. Ralph, and B. Shreeve, “Requirements fixation”, Proceedings - Interna-

tional Conference on Software Engineering, pp. 895–906, 2014, ISSN: 02705257. DOI:

10.1145/2568225.2568235.

[16] T. Halkjelsvik and M. Jørgensen, Time Predictions: Understanding and Avoiding Unre-

alism in Project Planning and Everyday Life. Springer Nature, 2018.

[17] K. Borowa, S. Kamoda, P. Ogrodnik, and A. Zalewski, “Fixations in agile software

development teams”, Foundations of Computing and Decision Sciences, vol. 48, no. 1,

pp. 3–18, 2023.

[18] I. Salman, P. Rodriguez, B. Turhan, A. Tosun, and A. Güreller, “What leads to a confir-

matory or disconfirmatory behavior of software testers?”, IEEE Transactions on Software

Engineering, vol. 48, no. 4, pp. 1351–1368, 2020.

[19] H. Van Vliet and A. Tang, “Decision making in software architecture”, Journal of Systems

and Software, vol. 117, pp. 638–644, 2016.

[20] S. Chattopadhyay, N. Nelson, A. Au, et al., “A Tale from the Trenches : Cognitive

Biases and Software Development”, in International Conference on Software Engineer-

ing (ICSE), 2020, pp. 654–665, ISBN: 9781450371216. DOI: 10.1145/3377811.

3380330. [Online]. Available: https : / / doi . org / 10 . 1145 / 3377811 .

3380330.

[21] M. Razavian, B. Paech, and A. Tang, “Empirical research for software architecture

decision making: An analysis”, Journal of Systems and Software, vol. 149, pp. 360–381,

2019.

[22] A. Tang, “Software designers, are you biased?”, Proceedings - International Conference

on Software Engineering, no. January 2011, pp. 1–8, 2011, ISSN: 02705257. DOI: 10.

1145/1988676.1988678.

[23] A. Manjunath, M. Bhat, K. Shumaiev, A. Biesdorf, and F. Matthes, “Decision Making

and Cognitive Biases in Designing Software Architectures”, Proceedings - 2018 IEEE

15th International Conference on Software Architecture Companion, ICSA-C 2018,

pp. 52–55, 2018. DOI: 10.1109/ICSA-C.2018.00022.

[24] A. Martini and J. Bosch, “The danger of architectural technical debt: Contagious debt and

vicious circles”, in 2015 12th Working IEEE/IFIP Conference on Software Architecture,

IEEE, 2015, pp. 1–10.

150

https://doi.org/10.1145/2568225.2568235
https://doi.org/10.1145/3377811.3380330
https://doi.org/10.1145/3377811.3380330
https://doi.org/10.1145/3377811.3380330
https://doi.org/10.1145/3377811.3380330
https://doi.org/10.1145/1988676.1988678
https://doi.org/10.1145/1988676.1988678
https://doi.org/10.1109/ICSA-C.2018.00022

10. References

[25] M. Soliman, P. Avgeriou, and Y. Li, “Architectural design decisions that incur techni-

cal debt—an industrial case study”, Information and Software Technology, vol. 139,

p. 106 669, 2021.

[26] A. Zalewski, K. Borowa, and A. Ratkowski, “On cognitive biases in architecture decision

making”, in Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10475 LNCS, 2017,

pp. 123–137, ISBN: 9783319658308. DOI: 10.1007/978-3-319-65831-59.

[27] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing technical debt in

software engineering (dagstuhl seminar 16162)”, in Dagstuhl reports, Schloss Dagstuhl -

Leibniz - Zentrum fuer Informatik, vol. 6, 2016.

[28] T. Besker, A. Martini, and J. Bosch, “Managing architectural technical debt: A unified

model and systematic literature review”, Journal of Systems and Software, vol. 135,

pp. 1–16, 2018, ISSN: 01641212. DOI: 10.1016/j.jss.2017.09.025. [Online].

Available: https://doi.org/10.1016/j.jss.2017.09.025.

[29] M. Shepperd, C. Mair, and M. Jørgensen, “An Experimental Evaluation of a De-biasing

Intervention for Professional Software Developers”, in Proceedings of the 33rd An-

nual ACM Symposium on Applied Computing, 2018. DOI: 10.1145/3167132.

3167293. arXiv: 1804.03919. [Online]. Available: http://arxiv.org/abs/

1804.03919%7B%5C%%7D0Ahttp://dx.doi.org/10.1145/3167132.

3167293.

[30] K. M. Borowa, “On cognitive biases in software engineering”, Instytut Automatyki i

Informatyki Stosowanej, 2019.

[31] W. James, Principles of Psychology (1980). Henry Holt and Company, 1931.

[32] M. I. Posner, C. R. Snyder, and R. Solso, “Attention and cognitive control”, Cognitive

psychology: Key readings, vol. 205, pp. 55–85, 2004.

[33] A. Tversky and D. Kahneman, “Judgment under uncertainty: Heuristics and biases”,

science, vol. 185, no. 4157, pp. 1124–1131, 1974.

[34] D. Kahneman and A. Tversky, “Subjective probability: A judgment of representative-

ness”, Cognitive psychology, vol. 3, no. 3, pp. 430–454, 1972.

[35] T. Pachur, R. Hertwig, and F. Steinmann, “How do people judge risks: Availability

heuristic, affect heuristic, or both?”, Journal of Experimental Psychology: Applied,

vol. 18, no. 3, p. 314, 2012.

151

https://doi.org/10.1007/978-3-319-65831-59
https://doi.org/10.1016/j.jss.2017.09.025
https://doi.org/10.1016/j.jss.2017.09.025
https://doi.org/10.1145/3167132.3167293
https://doi.org/10.1145/3167132.3167293
https://arxiv.org/abs/1804.03919
http://arxiv.org/abs/1804.03919%7B%5C%%7D0Ahttp://dx.doi.org/10.1145/3167132.3167293
http://arxiv.org/abs/1804.03919%7B%5C%%7D0Ahttp://dx.doi.org/10.1145/3167132.3167293
http://arxiv.org/abs/1804.03919%7B%5C%%7D0Ahttp://dx.doi.org/10.1145/3167132.3167293

10. References

[36] A. Furnham and H. C. Boo, “A literature review of the anchoring effect”, The journal of

socio-economics, vol. 40, no. 1, pp. 35–42, 2011.

[37] W. Wattanacharoensil and D. La-ornual, “A systematic review of cognitive biases in

tourist decisions”, Tourism Management, vol. 75, pp. 353–369, 2019.

[38] G. Saposnik, D. Redelmeier, C. C. Ruff, and P. N. Tobler, “Cognitive biases associated

with medical decisions: A systematic review”, BMC medical informatics and decision

making, vol. 16, no. 1, pp. 1–14, 2016.

[39] M. E. Oswald and S. Grosjean, “Confirmation bias”, in Cognitive illusions: A handbook

on fallacies and biases in thinking, judgement and memory, R. Pohl, Ed., Psychology

Press, 2004, pp. 97–114.

[40] L. M. Leventhal, B. M. Teasley, D. S. Rohlman, and K. Instone, “Positive test bias

in software testing among professionals: A review”, in Human-Computer Interaction:

Third International Conference, EWHCI’93 Moscow, Russia, August 3–7, 1993 Selected

Papers 3, Springer, 1993, pp. 210–218.

[41] A. Bracha and D. J. Brown, “Affective decision making: A theory of optimism bias”,

Games and Economic Behavior, vol. 75, no. 1, pp. 67–80, 2012.

[42] R. Buehler, D. Griffin, and M. Ross, “Exploring the" planning fallacy": Why people

underestimate their task completion times.”, Journal of personality and social psychology,

vol. 67, no. 3, p. 366, 1994.

[43] M. Ross and F. Sicoly, “Egocentric biases in availability and attribution.”, Journal of

personality and social psychology, vol. 37, no. 3, p. 322, 1979.

[44] S. Freud, Three essays on the theory of sexuality: The 1905 edition. Verso Books, 2017.

[45] P. Ralph, “Toward a theory of debiasing software development”, Lecture Notes in Busi-

ness Information Processing, vol. 93 LNBIP, pp. 92–105, 2011, ISSN: 18651348. DOI:

10.1007/978-3-642-25676-9_8.

[46] D. J. Malenka, J. A. Baron, S. Johansen, J. W. Wahrenberger, and J. M. Ross, “The

framing effect of relative and absolute risk”, Journal of general internal medicine, vol. 8,

pp. 543–548, 1993.

[47] J. L. Nicolau, J. P. Mellinas, and E. Martín-Fuentes, “The halo effect: A longitudinal

approach”, Annals of Tourism Research, vol. 83, p. 102 938, 2020.

[48] G. J. Browne and V. Ramesh, “Improving information requirements determination: A

cognitive perspective”, Information & Management, vol. 39, no. 8, pp. 625–645, 2002.

152

https://doi.org/10.1007/978-3-642-25676-9_8

10. References

[49] M. G. Pitts and G. J. Browne, “Improving requirements elicitation: An empirical investi-

gation of procedural prompts”, Information systems journal, vol. 17, no. 1, pp. 89–110,

2007.

[50] S. Chakraborty, S. Sarker, and S. Sarker, “An exploration into the process of requirements

elicitation: A grounded approach”, Journal of the association for information systems,

vol. 11, no. 4, p. 1, 2010.

[51] A. Zalewski, K. Borowa, and D. Kowalski, “On cognitive biases in requirements elici-

tation”, in Integrating Research and Practice in Software Engineering, Springer, 2020,

pp. 111–123.

[52] W. Stacy and J. MacMillan, “Cognitive bias in software engineering”, Communications

of the ACM, vol. 38, no. 6, pp. 57–63, 1995.

[53] J. Parsons and C. Saunders, “Cognitive heuristics in software engineering applying and

extending anchoring and adjustment to artifact reuse”, IEEE Transactions on Software

Engineering, vol. 30, no. 12, pp. 873–888, 2004.

[54] G. Allen and J. Parsons, “Is query reuse potentially harmful? anchoring and adjustment

in adapting existing database queries”, Information Systems Research, vol. 21, no. 1,

pp. 56–77, 2010.

[55] G. Calikli and A. Bener, “Empirical analyses of the factors affecting confirmation

bias and the effects of confirmation bias on software developer/tester performance”,

in Proceedings of the 6th International Conference on Predictive Models in Software

Engineering, 2010, pp. 1–11.

[56] G. Çalıklı and A. B. Bener, “Influence of confirmation biases of developers on software

quality: An empirical study”, Software Quality Journal, vol. 21, pp. 377–416, 2013.

[57] G. Calikli, A. Bener, and B. Arslan, “An analysis of the effects of company cul-

ture, education and experience on confirmation bias levels of software developers and

testers”, in Proceedings of the 32nd ACM/IEEE International Conference on Software

Engineering-Volume 2, 2010, pp. 187–190.

[58] G. Calikli, B. Aslan, and A. Bener, “Confirmation bias in software development and

testing: An analysis of the effects of company size, experience and reasoning skills”,

2010.

[59] M. Jørgensen and D. I. Sjøberg, “Software process improvement and human judgement

heuristics”, Scandinavian Journal of Information Systems, vol. 13, no. 1, p. 2, 2001.

153

10. References

[60] K. Moløkken and M. Jørgensen, “Software effort estimation: Unstructured group discus-

sion as a method to reduce individual biases.”, in PPIG, 2003, p. 4.

[61] K. Moløkken-Østvold and M. Jørgensen, “Group processes in software effort estimation”,

Empirical Software Engineering, vol. 9, no. 4, pp. 315–334, 2004.

[62] K. Molokken-Ostvold and N. C. Haugen, “Combining estimates with planning poker–an

empirical study”, in 2007 Australian Software Engineering Conference (ASWEC’07),

IEEE, 2007, pp. 349–358.

[63] K. Moløkken and M. Jørgensen, “Expert estimation of the effort of web-development

projects: Why are software professionals in technical roles more optimistic than those in

nontechnical roles”, Journal of Empirical Software Engineering, 2004.

[64] M. Jørgensen, K. H. Teigen, and K. Moløkken, “Better sure than safe? over-confidence

in judgement based software development effort prediction intervals”, Journal of systems

and software, vol. 70, no. 1-2, pp. 79–93, 2004.

[65] M. Jorgensen and S. Grimstad, “Over-optimism in software development projects:" the

winner’s curse"”, in 15th International Conference on Electronics, Communications and

Computers (CONIELECOMP’05), IEEE, 2005, pp. 280–285.

[66] M. Jørgensen and B. Faugli, “Prediction of overoptimistic predictions”, in 10th Interna-

tional Conference on Evaluation and Assessment in Software Engineering (EASE) 10,

2006, pp. 1–10.

[67] M. Jørgensen, “Identification of more risks can lead to increased over-optimism of and

over-confidence in software development effort estimates”, Information and Software

Technology, vol. 52, no. 5, pp. 506–516, 2010.

[68] O. Shmueli, N. Pliskin, and L. Fink, “Can the outside-view approach improve planning

decisions in software development projects?”, Information Systems Journal, vol. 26,

no. 4, pp. 395–418, 2016.

[69] K. M. Lui and K. C. Chan, “A cognitive model for solo programming and pair pro-

gramming”, in Proceedings of the Third IEEE International Conference on Cognitive

Informatics, 2004., IEEE, 2004, pp. 94–102.

[70] F. Ramin, “The role of egocentric bias in undergraduate agile software development

teams”, in Proceedings of the ACM/IEEE 42nd International Conference on Software

Engineering: Companion Proceedings, 2020, pp. 122–124.

154

10. References

[71] P. Tobias and D. S. Spiegel, Is design the preeminent protagonist in user experience?,

2009.

[72] C. Gacek, A. Abd-Allah, B. Clark, and B. Boehm, “On the definition of software system

architecture”, in Proceedings of the First International Workshop on Architectures for

Software Systems, Seattle, Wa, 1995, pp. 85–94.

[73] L. Bass, P. Clements, and R. Kazman, Software architecture in practice. Addison-Wesley

Professional, 2003.

[74] A. Tang and R. Kazman, “Decision-making principles for better software design deci-

sions”, IEEE Software, vol. 38, no. 6, pp. 98–102, 2021.

[75] A. Tang, M. Razavian, B. Paech, and T. M. Hesse,

[76] A. Tang and H. van Vliet, “Design strategy and software design effectiveness”, IEEE

software, vol. 29, no. 1, pp. 51–55, 2011.

[77] H. van Vliet and A. Tang, “Decision making in software architecture”, Journal of Systems

and Software, vol. 117, pp. 638–644, 2016, ISSN: 01641212. DOI: 10.1016/j.jss.

2016.01.017.

[78] B. Fischhoff, “Debiasing. judgment under uncertainty: Heuristics and biases”, Judgment

under uncertainty: Heuristics and biases, pp. 422–444, 1982.

[79] M. Razavian, A. Tang, R. Capilla, and P. Lago, “In two minds: How reflections influence

software design thinking”, Journal of Software: Evolution and Process, vol. 28, no. 6,

pp. 394–426, 2016.

[80] A. Tang, F. Bex, C. Schriek, and J. M. E. van der Werf, “Improving software design

reasoning–a reminder card approach”, Journal of Systems and Software, vol. 144, pp. 22–

40, 2018.

[81] O. Zimmermann, J. Koehler, F. Leymann, R. Polley, and N. Schuster, “Managing archi-

tectural decision models with dependency relations, integrity constraints, and production

rules”, Journal of Systems and Software, vol. 82, no. 8, pp. 1249–1267, 2009.

[82] A. Tang, M. A. Babar, I. Gorton, and J. Han, “A survey of architecture design rationale”,

Journal of Systems and Software, vol. 79, no. 12, pp. 1792–1804, 2006, ISSN: 01641212.

[83] M. Razavian, B. Paech, and A. Tang, “Empirical research for software architecture

decision making: An analysis”, Journal of Systems and Software, vol. 149, pp. 360–381,

2019, ISSN: 01641212.

155

https://doi.org/10.1016/j.jss.2016.01.017
https://doi.org/10.1016/j.jss.2016.01.017

10. References

[84] R. Weinreich, I. Groher, and C. Miesbauer, “An expert survey on kinds, influence

factors and documentation of design decisions in practice”, Future Generation Computer

Systems, vol. 47, pp. 145–160, 2015, ISSN: 0167739X.

[85] C. Miesbauer and R. Weinreich, “Classification of design decisions–an expert survey in

practice”, in Software Architecture: 7th European Conference, ECSA 2013, Montpellier,

France, July 1-5, 2013. Proceedings 7, Springer, 2013, pp. 130–145.

[86] T. Bi, P. Liang, and A. Tang, “Architecture Patterns, Quality Attributes, and Design

Contexts: How Developers Design with Them”, Proceedings - Asia-Pacific Software

Engineering Conference, APSEC, vol. 2018-Decem, no. 61472286, pp. 49–58, 2018,

ISSN: 15301362.

[87] M. Soliman, M. Riebisch, and U. Zdun, “Enriching Architecture Knowledge with

Technology Design Decisions”, Proceedings - 12th Working IEEE/IFIP Conference

on Software Architecture, WICSA 2015, pp. 135–144, 2015.

[88] M. Bhat, K. Shumaiev, U. Hohenstein, A. Biesdorf, and F. Matthes, “The evolution of

architectural decision making as a key focus area of software architecture research: A

semi-systematic literature study”, in 2020 IEEE International Conference on Software

Architecture (ICSA), IEEE, 2020, pp. 69–80.

[89] T. Bi, P. Liang, A. Tang, and X. Xia, “Mining Architecture Tactics and Quality Attributes

Knowledge in Stack Overflow”, Journal of Systems and Software, no. May, 2021.

[90] ISO/IEC 25010, ISO/IEC 25010:2011, systems and software engineering — systems and

software quality requirements and evaluation (square) — system and software quality

models, 2011.

[91] M. Bhat, C. Tinnes, K. Shumaiev, A. Biesdorf, U. Hohenstein, and F. Matthes, “Adex:

A tool for automatic curation of design decision knowledge for architectural decision

recommendations”, in 2019 IEEE International Conference on Software Architecture

Companion (ICSA-C), IEEE, 2019, pp. 158–161.

[92] M. X. Liu, J. Hsieh, N. Hahn, et al., “Unakite: Scaffolding developers’ decision-making

using the web”, in Proceedings of the 32nd Annual ACM Symposium on User Interface

Software and Technology, 2019, pp. 67–80.

[93] M. Razavian, A. Tang, R. Capilla, and P. Lago, “Reflective approach for software design

decision making”, Proceedings - 1st Workshop on Qualitative Reasoning about Software

Architectures, QRASA 2016, pp. 19–26, 2016.

156

10. References

[94] A. Tang and R. Kazman, “Decision-Making Principles for Better Software Design

Decisions”, IEEE Software, vol. 38, no. 6, pp. 98–102, 2021, ISSN: 19374194.

[95] J. E. Burge, “Design rationale: Researching under uncertainty”, Artificial Intelligence for

Engineering Design, Analysis and Manufacturing: AIEDAM, vol. 22, no. 4, pp. 311–324,

2008, ISSN: 08900604.

[96] M. J. De Dieu, P. Liang, and M. Shahin, “How Do Developers Search for Architectural

Information? An Industrial Survey”, Proceedings - IEEE 19th International Conference

on Software Architecture, ICSA 2022, no. December 2021, pp. 58–68, 2022. arXiv:

2112.10920.

[97] D. Tofan, M. Galster, and P. Avgeriou, “Difficulty of architectural decisions – a survey

with professional architects”, in Software Architecture, K. Drira, Ed., Berlin, Heidelberg:

Springer Berlin Heidelberg, 2013, pp. 192–199, ISBN: 978-3-642-39031-9.

[98] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case Study Research in Software Engi-

neering: Guidelines and Examples. 2012, ISBN: 9781118104354. [Online]. Available:

www.wiley.com..

[99] K. Borowa, R. Lewanczyk, K. Stpiczyńska, P. Stradomski, and A. Zalewski, What

rationales drive architectural decisions? An empirical inquiry - Additional material, ver-

sion 1, Zenodo, May 2023. DOI: 10.5281/zenodo.7946764. [Online]. Available:

https://doi.org/10.5281/zenodo.7946764.

[100] J. Saldaña, “The coding manual for qualitative researchers”, The coding manual for

qualitative researchers, pp. 1–440, 2021.

[101] D. R. Garrison, M. Cleveland-Innes, M. Koole, and J. Kappelman, “Revisiting method-

ological issues in transcript analysis: Negotiated coding and reliability”, Internet and

Higher Education, vol. 9, no. 1, pp. 1–8, 2006, ISSN: 10967516.

[102] K. Beck, M. Beedle, A. van Bennekum, et al. “Principles behind the Agile Manifesto”.

(2001), [Online]. Available: https://agilemanifesto.org/principles.

html (visited on 07/05/2021).

[103] P. Kruchten, R. Nord, and I. Ozkaya, Managing Technical Debt. Addison-Wesley Profes-

sional, 2019.

[104] A. Zalewski, K. Borowa, and A. Ratkowski, “On cognitive biases in architecture decision

making”, in Software Architecture, A. Lopes and R. de Lemos, Eds., Cham: Springer

International Publishing, 2017, pp. 123–137, ISBN: 978-3-319-65831-5.

157

https://arxiv.org/abs/2112.10920
www.wiley.com.
https://doi.org/10.5281/zenodo.7946764
https://doi.org/10.5281/zenodo.7946764
https://agilemanifesto.org/principles.html
https://agilemanifesto.org/principles.html

10. References

[105] K. Daniel, Thinking, fast and slow. 2017.

[106] P. Naur and B. Randell, “Software engineering: Report of a conference sponsored by the

nato science committee, garmisch, germany, 7th-11th october 1968”, 1969.

[107] J. N. Buxton and B. Randell, Software Engineering Techniques: Report on a Conference

Sponsored by the NATO Science Committee. NATO Science Committee; available from

Scientific Affairs Division, NATO, 1970.

[108] A. Tversky and D. Kahneman, “Rational choice and the framing of decisions”, Decision

making: Descriptive, normative, and prescriptive interactions, pp. 167–192, 1988.

[109] H. Leibenstein, “Bandwagon, snob, and veblen effects in the theory of consumers’

demand”, The quarterly journal of economics, vol. 64, no. 2, pp. 183–207, 1950.

[110] S. A. Birch and P. Bloom, “The curse of knowledge in reasoning about false beliefs”,

Psychological Science, vol. 18, no. 5, pp. 382–386, 2007.

[111] D. Kahneman and J. Renshon, “Hawkish biases”, American Foreign Policy and the

Politics of Fear: Threat Inflation Since, vol. 9, no. 11, pp. 79–96, 2009.

[112] C. Zannier, M. Chiasson, and F. Maurer, “A model of design decision making based

on empirical results of interviews with software designers”, Information and Software

Technology, vol. 49, no. 6, pp. 637–653, 2007.

[113] A. Tang and H. van Vliet, “Software designers satisfice”, in Software Architecture: 9th

European Conference, ECSA 2015, Dubrovnik/Cavtat, Croatia, September 7-11, 2015.

Proceedings 9, Springer, 2015, pp. 105–120.

[114] J. Kruger and D. Dunning, “Unskilled and unaware of it: How difficulties in recognizing

one’s own incompetence lead to inflated self-assessments.”, Journal of personality and

social psychology, vol. 77, no. 6, p. 1121, 1999.

[115] W. H. Brown, R. C. Malveau, H. W. S. McCormick, and T. J. Mowbray, AntiPatterns:

refactoring software, architectures, and projects in crisis. John Wiley & Sons, Inc., 1998.

[116] R. S. Nickerson, “Confirmation bias: A ubiquitous phenomenon in many guises”, Review

of general psychology, vol. 2, no. 2, pp. 175–220, 1998.

[117] M. I. Norton, D. Mochon, and D. Ariely, “The ikea effect: When labor leads to love”,

Journal of consumer psychology, vol. 22, no. 3, pp. 453–460, 2012.

[118] C. N. Parkinson, Parkinson’s Law, or the Pursuit of Progress. 1958.

[119] E. M. Rogers, Diffusion of innovations. Simon and Schuster, 2010.

[120] M. H. Bazerman and M. A. Neale, Negotiating rationally. Simon and Schuster, 1993.

158

10. References

[121] T. Sharot, A. M. Riccardi, C. M. Raio, and E. A. Phelps, “Neural mechanisms mediating

optimism bias”, Nature, vol. 450, no. 7166, pp. 102–105, 2007.

[122] N. Rios, M. G. de Mendonça Neto, and R. O. Spínola, “A tertiary study on technical debt:

Types, management strategies, research trends, and base information for practitioners”,

Information and Software Technology, vol. 102, pp. 117–145, 2018.

[123] W. Cunningham, “The WyCash portfolio management system”, in Proceedings of the

Conference on Object-Oriented Programming Systems, Languages, and Applications,

OOPSLA, vol. Part F1296, 1992, pp. 29–30, ISBN: 0897916107. DOI: 10.1145/

157709.157715.

[124] E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical debt”, Journal of Systems

and Software, vol. 86, no. 6, pp. 1498–1516, 2013.

[125] T. Amanatidis, N. Mittas, A. Chatzigeorgiou, A. Ampatzoglou, and L. Angelis, “The de-

veloper’s dilemma: Factors affecting the decision to repay code debt”, in 2018 IEEE/ACM

International Conference on Technical Debt (TechDebt), vol. 5, 2018, pp. 62–66, ISBN:

9781450357135. DOI: 10.1145/3194164.3194174. [Online]. Available: https:

//doi.org/10.1145/3194164.3194174.

[126] A. Martini and J. Bosch, “The Danger of Architectural Technical Debt: Contagious Debt

and Vicious Circles”, in Proceedings - 12th Working IEEE/IFIP Conference on Software

Architecture, WICSA 2015, 2015, pp. 1–10, ISBN: 9781479919222. DOI: 10.1109/

WICSA.2015.31. [Online]. Available: https://www.researchgate.net/

publication/273769557.

[127] R. Verdecchia, P. Kruchten, and P. Lago, “Architectural Technical Debt : A Grounded

Theory”, European Conference on Software Architecture (ECSA), 2020.

[128] R. Brenner, “Balancing resources and load: Eleven nontechnical phenomena that con-

tribute to formation or persistence of technical debt”, in Proceedings - 2019 IEEE/ACM

International Conference on Technical Debt, TechDebt 2019, 2019, pp. 38–47, ISBN:

9781728133713. DOI: 10.1109/TechDebt.2019.00013.

[129] R. Mohanani, P. Ralph, and B. Shreeve, “Requirements fixation”, in Proceedings of the

36th International Conference on Software Engineering, 2014, pp. 895–906.

[130] J. Bosch, “Software architecture: The next step”, Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-

159

https://doi.org/10.1145/157709.157715
https://doi.org/10.1145/157709.157715
https://doi.org/10.1145/3194164.3194174
https://doi.org/10.1145/3194164.3194174
https://doi.org/10.1145/3194164.3194174
https://doi.org/10.1109/WICSA.2015.31
https://doi.org/10.1109/WICSA.2015.31
https://www.researchgate.net/publication/273769557
https://www.researchgate.net/publication/273769557
https://doi.org/10.1109/TechDebt.2019.00013

10. References

formatics), vol. 3047, pp. 194–199, 2004, ISSN: 03029743. DOI: 10.1007/978-3-

540-24769-214.

[131] R. Alfayez, W. Alwehaibi, R. Winn, E. Venson, and B. Boehm, “A systematic literature

review of technical debt prioritization”, in Proceedings of the 3rd International Con-

ference on Technical Debt, vol. 10, ACM, 2020, pp. 1–10, ISBN: 9781450379601. DOI:

10.1145/3387906.3388630. [Online]. Available: https://doi.org/10.

1145/3387906.3388630.

[132] C. Becker, R. Chitchyan, S. Betz, and C. McCord, “Trade-off decisions across time

in technical debt management: A systematic literature review”, in 2018 IEEE/ACM

International Conference on Technical Debt (TechDebt), ACM, 2018, pp. 85–94, ISBN:

9781450357135. DOI: 10.1145/3194164.3194171. [Online]. Available: https:

//doi.org/10.1145/3194164.3194171.

[133] N. Rios, M. Mendonça, and R. Spínola, “A tertiary study on technical debt: Types, man-

agement strategies, research trends, and base information for practitioners”, Information

and Software Technology, vol. 102, Jun. 2018. DOI: 10.1016/j.infsof.2018.

05.010.

[134] A. Martini, J. Bosch, and M. Chaudron, “Architecture technical debt: Understanding

causes and a qualitative model”, in 2014 40th EUROMICRO Conference on Software

Engineering and Advanced Applications, IEEE, 2014, pp. 85–92.

[135] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton, “Measure it? Manage it?

Ignore it? Software practitioners and technical debt”, in 2015 10th Joint Meeting of the

European Software Engineering Conference and the ACM SIGSOFT Symposium on the

Foundations of Software Engineering, ESEC/FSE 2015 - Proceedings, 2015, pp. 50–60,

ISBN: 9781450336758. DOI: 10.1145/2786805.2786848. [Online]. Available:

http://github.com/neilernst/td-survey.

[136] A. Tversky and D. Kahneman, “The framing of decisions and the psychology of choice”,

Science, 1981, ISSN: 00368075. DOI: 10.1126/science.7455683.

[137] G. B. Chapman and B. H. Bornstein, “The more you ask for, the more you get: Anchoring

in personal injury verdicts”, Applied Cognitive Psychology, 1996, ISSN: 08884080. DOI:

10.1002/(SICI)1099-0720(199612)10:6<519::AID-ACP417>3.0.

CO;2-5.

160

https://doi.org/10.1007/978-3-540-24769-214
https://doi.org/10.1007/978-3-540-24769-214
https://doi.org/10.1145/3387906.3388630
https://doi.org/10.1145/3387906.3388630
https://doi.org/10.1145/3387906.3388630
https://doi.org/10.1145/3194164.3194171
https://doi.org/10.1145/3194164.3194171
https://doi.org/10.1145/3194164.3194171
https://doi.org/10.1016/j.infsof.2018.05.010
https://doi.org/10.1016/j.infsof.2018.05.010
https://doi.org/10.1145/2786805.2786848
http://github.com/neilernst/td-survey
https://doi.org/10.1126/science.7455683
https://doi.org/10.1002/(SICI)1099-0720(199612)10:6<519::AID-ACP417>3.0.CO;2-5
https://doi.org/10.1002/(SICI)1099-0720(199612)10:6<519::AID-ACP417>3.0.CO;2-5

10. References

[138] J. Kennedy, “Debiasing in the Audit Curse of Knowledge Judgment”, The Accounting

Review, 1995, ISSN: 00014826.

[139] M. I. Norton, D. Mochon, and D. Ariely, “The IKEA effect: When labor leads to love”,

Journal of Consumer Psychology, 2012, ISSN: 10577408. DOI: 10.1016/j.jcps.

2011.08.002.

[140] C. Northcote Parkinson, “Parkinson’s law: Or the pursuit of progress”, 1961.

[141] E. M. Rogers, A. Singhal, and M. M. Quinlan, “Diffusion of innovations”, in An Inte-

grated Approach to Communication Theory and Research, Third Edition, 2019, ISBN:

9781351358712. DOI: 10.4324/9780203710753-35.

[142] M. V. Pezzo, J. A. Litman, and S. P. Pezzo, “On the distinction between yuppies and

hippies: Individual differences in prediction biases for planning future tasks”, Personality

and Individual Differences, 2006, ISSN: 01918869. DOI: 10.1016/j.paid.2006.

03.029.

[143] H. Leibenstein, “Bandwagon, snob, and veblen effects in the theory of consumers’

demand”, Quarterly Journal of Economics, 1950, ISSN: 15314650. DOI: 10.2307/

1882692.

[144] B. M. Staw, “The escalation of commitment: An update and appraisal”, in Organizational

Decision Making, 2010. DOI: 10.1017/cbo9780511584169.011.

[145] A. H. Maslow, The psychology of science; a reconnaissance. 1966, ISBN: National

Library: 0354146 LCCN: 66-11479.

[146] O. P. O’Sulliivan, “The Neural Basis of Always Looking on the Bright Side”, Dialogues

in Philosophy, Mental and Neuro, 2015.

[147] T. Besker, A. Martini, and J. Bosch, “Technical debt cripples software developer pro-

ductivity: A longitudinal study on developers’ daily software development work”, in

2018 IEEE/ACM International Conference on Technical Debt (TechDebt), vol. 10, 2018,

pp. 105–114, ISBN: 9781450357135. DOI: 10.1145/3194164.3194178. [Online].

Available: https://doi.org/10.1145/3194164.3194178.

[148] R. Verdecchia, “Architectural Technical Debt Identification: Moving Forward”, Proceed-

ings - 2018 IEEE 15th International Conference on Software Architecture Companion,

ICSA-C 2018, pp. 43–44, 2018. DOI: 10.1109/ICSA-C.2018.00018.

161

https://doi.org/10.1016/j.jcps.2011.08.002
https://doi.org/10.1016/j.jcps.2011.08.002
https://doi.org/10.4324/9780203710753-35
https://doi.org/10.1016/j.paid.2006.03.029
https://doi.org/10.1016/j.paid.2006.03.029
https://doi.org/10.2307/1882692
https://doi.org/10.2307/1882692
https://doi.org/10.1017/cbo9780511584169.011
https://doi.org/10.1145/3194164.3194178
https://doi.org/10.1145/3194164.3194178
https://doi.org/10.1109/ICSA-C.2018.00018

10. References

[149] M. M. Lehman, “Programs, Life Cycles, and Laws of Software Evolution”, Proceedings

of the IEEE, vol. 68, no. 9, pp. 1060–1076, 1980, ISSN: 15582256. DOI: 10.1109/

PROC.1980.11805.

[150] T. Stablein, D. Berndt, and M. Mullarkey, “Technical debt-related information asymme-

try between finance and IT”, in 2018 IEEE/ACM International Conference on Techni-

cal Debt (TechDebt), 2018, pp. 134–137, ISBN: 9781450357135. DOI: 10.1145/

3194164.3194180. [Online]. Available: https://doi.org/10.1145/

3194164.3194180.

[151] T. Besker, A. Martini, R. Edirisooriya Lokuge, K. Blincoe, and J. Bosch, “Embracing

technical debt, from a startup company perspective”, Proceedings - 2018 IEEE Interna-

tional Conference on Software Maintenance and Evolution, ICSME 2018, pp. 415–425,

2018. DOI: 10.1109/ICSME.2018.00051.

[152] T. Besker, A. Martini, and J. Bosch, “Carrot and stick approaches when managing tech-

nical debt”, in Proceedings of the 3rd International Conference on Technical Debt, 2020,

pp. 21–30, ISBN: 9781450379601. DOI: 10.1145/3387906.3388619. [Online].

Available: https://doi.org/10.1145/3387906.3388619.

[153] M. E. Fonteyn, B. Kuipers, and S. J. Grobe, “A description of think aloud method and

protocol analysis”, Qualitative health research, vol. 3, no. 4, pp. 430–441, 1993.

[154] G. Çalikli and A. B. Bener, “Influence of confirmation biases of developers on software

quality: An empirical study”, Software Quality Journal, vol. 21, no. 2, pp. 377–416,

2013, ISSN: 09639314. DOI: 10.1007/s11219-012-9180-0.

[155] A. Jansen and J. Bosch, “Software architecture as a set of architectural design decisions”,

in Proceedings - 5th Working IEEE/IFIP Conference on Software Architecture, WICSA

2005, vol. 2005, 2005, pp. 109–120, ISBN: 0769525482.

[156] K. Borowa, A. Zalewski, and S. Kijas, “The Influence of Cognitive Biases on Archi-

tectural Technical Debt”, in International Conference on Software Architecture (ICSA),

2021.

[157] A. Tang, F. Bex, C. Schriek, and J. M. E. van der Werf, “Improving software design

reasoning–A reminder card approach”, Journal of Systems and Software, vol. 144,

no. April 2017, pp. 22–40, 2018, ISSN: 01641212. DOI: 10.1016/j.jss.2018.

05.019. [Online]. Available: https://doi.org/10.1016/j.jss.2018.05.

019.

162

https://doi.org/10.1109/PROC.1980.11805
https://doi.org/10.1109/PROC.1980.11805
https://doi.org/10.1145/3194164.3194180
https://doi.org/10.1145/3194164.3194180
https://doi.org/10.1145/3194164.3194180
https://doi.org/10.1145/3194164.3194180
https://doi.org/10.1109/ICSME.2018.00051
https://doi.org/10.1145/3387906.3388619
https://doi.org/10.1145/3387906.3388619
https://doi.org/10.1007/s11219-012-9180-0
https://doi.org/10.1016/j.jss.2018.05.019
https://doi.org/10.1016/j.jss.2018.05.019
https://doi.org/10.1016/j.jss.2018.05.019
https://doi.org/10.1016/j.jss.2018.05.019

10. References

[158] W. Stacy and J. Macmillan, “Cognitive Bias in Software Engineering”, Communications

of the ACM, vol. 38, no. 6, pp. 57–63, 1995, ISSN: 15577317. DOI: 10.1145/203241.

203256.

[159] K. Borowa, R. Dwornik, and A. Zalewski, “Is knowledge the key? an experiment on

debiasing architectural decision-making-a pilot study”, in International Conference on

Product-Focused Software Process Improvement, Springer, 2021, pp. 207–214.

[160] A. Tversky and Kahneman Daniel, “Judgment under uncertainty: Heuristics and biases”,

Science, 1974, ISSN: 15206882.

[161] K. Borowa, M. Jarek, G. Mystkowska, W. Paszko, and A. Zalewski, Additional Material

for Debiasing architectural decision-making: a workshop-based training approach,

Zenodo, Jun. 2022. DOI: 10.5281/zenodo.6751990. [Online]. Available: https:

//doi.org/10.5281/zenodo.6751990.

[162] K. Borowa, A. Zalewski, and S. Kijas, “The influence of cognitive biases on architectural

technical debt”, in 2021 IEEE 18th International Conference on Software Architecture

(ICSA), IEEE, 2021, pp. 115–125.

[163] S. Brown, The c4 model for software architecture, Jun. 2018. [Online]. Available:

https://www.infoq.com/articles/C4-architecture-model/.

[164] J. Saldaña, “The coding manual for qualitative researchers”, The coding manual for

qualitative researchers, pp. 1–440, 2021.

[165] G. R. Norman, S. D. Monteiro, J. Sherbino, J. S. Ilgen, H. G. Schmidt, and S. Mamede,

“The causes of errors in clinical reasoning: Cognitive biases, knowledge deficits, and

dual process thinking”, Academic Medicine, vol. 92, no. 1, pp. 23–30, 2017.

[166] K. Borowa, M. Jarek, G. Mystkowska, W. Paszko, and A. Zalewski, “Debiasing architec-

tural decision-making: a workshop-based training approach”, in European Conference on

Software Architecture (ECSA), 2022, pp. 1–8. arXiv: 2206.14701. [Online]. Available:

http://arxiv.org/abs/2206.14701.

[167] M. Galster and D. Weyns, “Empirical research in software architecture—perceptions of

the community”, Journal of Systems and Software, vol. 202, p. 111 684, 2023.

[168] S. Baltes and P. Ralph, “Sampling in software engineering research: A critical review

and guidelines”, Empirical Software Engineering, vol. 27, no. 4, p. 94, 2022.

[169] U. Van Heesch, P. Avgeriou, and R. Hilliard, “A documentation framework for architec-

ture decisions”, Journal of Systems and Software, vol. 85, no. 4, pp. 795–820, 2012.

163

https://doi.org/10.1145/203241.203256
https://doi.org/10.1145/203241.203256
https://doi.org/10.5281/zenodo.6751990
https://doi.org/10.5281/zenodo.6751990
https://doi.org/10.5281/zenodo.6751990
https://www.infoq.com/articles/C4-architecture-model/
https://arxiv.org/abs/2206.14701
http://arxiv.org/abs/2206.14701

10. References

[170] A. Manjunath, M. Bhat, K. Shumaiev, A. Biesdorf, and F. Matthes, “Decision Making

and Cognitive Biases in Designing Software Architectures”, Proceedings - 2018 IEEE

15th International Conference on Software Architecture Companion, ICSA-C 2018,

pp. 52–55, 2018. DOI: 10.1109/ICSA-C.2018.00022.

[171] K. Borowa, A. Zalewski, and S. Kijas, “The Influence of Cognitive Biases on Archi-

tectural Technical Debt”, in International Conference on Software Architecture (ICSA),

2021.

[172] E. Løhre and M. Jørgensen, “Numerical anchors and their strong effects on software

development effort estimates”, Journal of Systems and Software, vol. 116, pp. 49–56,

2016, ISSN: 01641212. DOI: 10.1016/j.jss.2015.03.015.

[173] T. Sharot, “The optimism bias”, Current biology, vol. 21, no. 23, R941–R945, 2011.

[174] E. Shalev, M. Keil, J. S. Lee, and Y. Ganzach, “Optimism Bias in Managing It Project

Risks: a Construal Level”, European Conference on Information Systems, 2014.

[175] C. W. Turner, J. R. Lewis, and J. Nielsen, “Determining usability test sample size”,

International encyclopedia of ergonomics and human factors, vol. 3, no. 2, pp. 3084–

3088, 2006.

[176] F. Wilcoxon, “Individual comparisons by ranking methods”, in Breakthroughs in statis-

tics: Methodology and distribution, Springer, 1992, pp. 196–202.

[177] K. A. Ericsson and H. A. Simon, Protocol analysis: Verbal reports as data, Rev. ed.

Cambridge, MA, US: The MIT Press, 1993, pp. liii, 443–liii, 443, ISBN: 0-262-05047-1

(Hardcover); 0-262-55023-7 (Paperback).

[178] Anonymous, Additional Material for Debiasing Architectural Decision-Making: Teach-

ing Software Practitioners, Zenodo, Apr. 2024. DOI: 10.5281/zenodo.11047872.

[179] M. Soliman, M. Wiese, Y. Li, M. Riebisch, and P. Avgeriou, “Exploring web search

engines to find architectural knowledge”, in 2021 IEEE 18th International Conference

on Software Architecture (ICSA), IEEE, 2021, pp. 162–172.

[180] H. Cervantes and R. Kazman, Designing software architectures: a practical approach.

Addison-Wesley Professional, 2016.

[181] H. Muccini et al., “Group decision-making in software architecture: A study on industrial

practices”, Information and software technology, vol. 101, pp. 51–63, 2018.

[182] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén, Experi-

mentation in Software Engineering: An Introduction (International Series in Software

164

https://doi.org/10.1109/ICSA-C.2018.00022
https://doi.org/10.1016/j.jss.2015.03.015
https://doi.org/10.5281/zenodo.11047872

10. References

Engineering). Springer Science & Business Media, 2000, ISBN: 978-1-4615-4625-2. [On-

line]. Available: https://www.springer.com/gp/book/9781461370918%

7B%5C#%7DaboutBook.

165

https://www.springer.com/gp/book/9781461370918%7B%5C#%7DaboutBook
https://www.springer.com/gp/book/9781461370918%7B%5C#%7DaboutBook

List of Figures

1.1 Thesis overview . 21

2.1 Dual-process judgment . 25

3.1 Study phases . 39

3.2 Questionnaire participants . 40

3.3 Questionnaire participants companies . 40

4.1 How biases influence architecture decision making 60

6.1 Biased arguments . 102

6.2 Argument count . 102

6.3 Biases in statements . 103

8.1 Study steps . 125

8.2 Average code sums for each measured value . 131

List of Tables

3.1 Interview participants . 41

3.2 Codes . 43

3.3 Questionnaire results. ISO/IEC 25010 quality attributes are marked by a bold font. 44

4.1 Biases relevant to architecture decision making indicated by the workshop

participants . 59

4.2 Influence of cognitive biases on architecture decision making 64

5.1 Participant data . 79

5.2 Qualitative analysis codes . 80

5.3 Technical debt occurrences mentioned by participants 81

5.4 Cognitive biases present in the participants’ accounts 83

5.5 Cognitive biases influencing ATD items . 84

6.1 Coding Scheme . 101

6.2 Participant data . 101

8.1 Participants (W-workshop group / C-Control group) . 123

8.2 Coding scheme: adapted from [166] . 130

8.3 p-values for each measurement . 132

166

8.4 (Non-)Biased Arguments and Counterarguments(B – Biased, NB – Non-biased) 133

8.5 Occurrences of Cognitive Bias (ANCH – Anchoring, OPT – Optimism bias, CONF – Confirmation bias) 134

8.6 Use of Debiasing techniques (DRAW – Stating drawback, MULTI – Listing solution alternatives , RISK – Stating risks) 135

8.7 Decisions discussed . 135

167

	KlaraBorowaRozprawa.pdf
	Acknowledgments
	Introduction
	Research Questions
	Author's published work
	Thesis Outline

	State of the Art
	Cognitive biases
	Cognitive biases in software engineering
	Cognitive biases in requirements engineering
	Cognitive biases in implementation
	Cognitive biases in testing
	Cognitive biases in software effort estimation
	Other impacts of cognitive biases on software engineering activities

	Cognitive biases and architectural decision-making
	Debiasing

	What rationales drive architectural decisions? An empirical inquiry
	Preface
	Abstract
	Introduction
	Related Work
	Method
	Questionnaire: data-gathering
	Questionnaire: analysis
	Interviews: data gathering
	Interviews: analysis

	Results
	RQ1 & RQ2: Most frequent rationales and prioritised software quality attributes
	RQ3: Rationales' origins

	Discussion
	Threats to validity
	Conclusion

	On Cognitive Biases in Architecture Decision Making
	Preface
	Abstract
	Introduction
	Related Work
	Investigating Biases in Architectural Decision Making
	Workshop on Biases in Architecture Decision-Making
	Influence of Cognitive Biases on Architecture Decision-Making

	Cognitive Biases in the Practical Conditions of Architectural Decision Making
	Results
	Discussion, Limitations
	Summary and Research Outlook

	The Influence of Cognitive Biases on Architectural Technical Debt
	Preface
	Abstract
	Introduction
	Related Work
	Research Method
	Cognitive biases
	Architectural Debt items
	Research procedure
	Study participants
	Analysis Procedure

	Results
	Architectural debt items influenced by cognitive biases
	Cognitive biases that influence ATD items
	Influence of cognitive biases on ATD items
	Cognitive bias antecedents (RQ4)
	Possible debiasing methods (RQ5)

	Discussion
	Threats to Validity
	Conclusion and Research outlook

	Is knowledge the key? An experiment on debiasing architectural decision-making - a pilot study
	Preface
	Abstract
	Introduction
	Related Work
	Study Design
	Bias selection
	Data acquisition
	Data Analysis
	Participants

	Results
	Threats to validity
	Discussion
	Research outlook
	Conclusion

	Debiasing architectural decision-making: a workshop-based training approach
	Preface
	Abstract
	Introduction
	Related work
	Research Method
	Biases
	Architectural decision-making task
	Debiasing Workshop Design
	Sample
	Analysis

	Results
	Arguments.
	Decisions.
	Cognitive biases.
	Debiasing techniques.

	Discussion
	Threats to Validity
	Conclusion and Future Work

	Debiasing Experts
	Preface
	Abstract
	Introduction
	Related work
	Cognitive biases
	Debiasing

	Method
	Sample
	The experiment
	Debiasing Workshop
	Data Analysis

	Results
	Statistical significance
	Arguments and Counterarguments
	Cognitive biases
	Debiasing techniques
	Decisions

	Discussion
	Lessons learned

	Threats to validity
	Conclusion
	Data availability

	Discussion and limitations
	Limitations

	Conclusion
	Data availability

	References
	List of Figures
	List of Tables

